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Abstract

In this final thesis, we propose a full-attention sequence to sequence architecture to tackle the im-

age captioning and vision questions answering tasks, called Captioning and Answering TransformeR

(CATR). The CATR receives raw images and the start token as the input and automatically generates

the descriptions of images. Compared to the traditional architectures (CNN encoder with RNN de-

coder) design paradigms, our model is convolutional-free. The current researches announce that the

attention mechanism, more specifically the transformer, has quite an excellent performance in both

Computer Vision (CV) and Natural Language Processing (NLP) regions. Meanwhile, a traditional

RNN-based decoder cannot take the computations parallelly, making the training and evaluation cost

much time. As for the new state-of-the-art (SOTA) architecture in Image Caption, called the Caption

Transformer (CPTR), it is the first full-transformermodel to deal with the Image Captioning task on the

MSCOCO dataset. It declares that the full-attention-based architecture, so-called transformer, is good

enough to connect the CV and NLP aspects. Whereas, there are still some drawbacks in the CPTR,

though its works are fantastic. They are: 1) Directly transferring the traditional transformer from NLP

to CV faces the huge time complexity when the resolution of the raw image is too fine. 2) Although the

traditional transformer has an outstanding performance in extracting features of the global contexts,

it is poor to extract the finer-level features in the image. However, both global and local features are

significant in the CV tasks. Therefore, to overcome the above problems of the CPTR, we consider the

following pipeline: 1) We employ the outlook-attention-based Vision Outlooker (VOLO) to replace

the self-attention-based transformer in the encoder of the CPTR to extract the visual features, which

can extract the fine and coarse features like the convolutional neural network (CNN). 2) We modify

the standard decoder into two transformer-based decoders to simultaneously decode the visual and

linguistic features to establish an information exchanging opportunity for both vision and linguistic

context to complete the questions answering tasks.
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1. Introduction

Image Captioning and Vision Questions Answering are pretty excited and challenging tasks. Im-

age Caption requires the model to receive an image and automatically generate the description of it.

Beyond this, the VisionQuestions Answering considers understanding the context in the image and an-

swering some questions by following its context. Therefore, to solve these two tasks must combine the

efficient architectures and mechanisms in both Computer Vision and Natural Language Processing re-

gions. These two tasks can help some visually impaired people to get knowledge about the scenes. The

most helpful architecture to tackle these two tasks is the sequence to sequence (Seq2Seq) model [30].

Seq2Seq architecture consists of two independent neural networks, which are encoder and decoder.

The encoder deploys to generate the features representation of the input data, so-called embedding.

The decoder is responsible for generating the expected output from the embedding. It means that the

Seq2Seq architecture is quite efficient in transforming a data representation into another, which is

suitable for the two tasks mentioned before. We wonder to convert the data representation in an image

into sentence.

There are three main stages with the development of the Seq2Seq architecture [30] in Image Cap-

tioning during the past five years. 1) Combination of the CNN encoder and RNN decoder [33], they

employ the efficient CNN model [29] [11] [31], which is pre-trained by ImageNet classification tasks

to be the encoder to produce the embedding of the image. Afterward, the decoder receives the visual

representation to be the initial hidden state of the RNN [7], more specifically LSTM [8], to output

the description word by word. 2) Due to the attention mechanism is efficient in machine translation,

which is another data representation conversion issue. The researchers start deploying the attention

mechanism into the Image Captioning and Vision Questions Answering tasks [34] [21] to find out

what image sub-regions have to pay more attention to when generating sentence word by word. More

detailed, there are two kinds of attention mechanisms. One is ’Hard’ attention which directly assigns

each word in the expected sentence to a fixed region in the image. Another one is ’Soft’ attention

which permits the neural network to learn the attention by itself. Besides, there are one varients which

is called Visual Sentinel. Unlike the ’Hard’ and ’Soft’ attentions that focus on where to see in the im-

age when producing the sentence, Visual Sentinel aims to figure out when the prediction of a word has

to see the image. 3) With the development of the ’Hard’ attention mechanism, researchers realize that

the essence is to use the fixed regions in the image to predict the words. Hence, some of them started
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to apply the object detection models [10] [9] [27] [24] [25] [26] [3] to generate the fixed regions. This

pipeline consists of Bottom-Up and Top-Down architecture [1].

Inspired by the fantastic performance of the transformer [32] in machine translation and other

NLP tasks, recently, some researchers have started transplanting this new sequence to sequence ar-

chitecture into the Image Captioning and Vision Questions Answering. Meanwhile, the researchers

are encouraged by successfully transplanting the transformer into some other vision tasks, like object

detection and image classification, more specifically, Detection Transformer (DETR) [4] and Vision

Transformer (ViT) [6]. The current state-of-the-art Neural Image Caption Generator (NIC) called

Caption Transformer (CPTR) had been issued. Unlike the other transformer-based NIC, the CPTR

is the first full-transformer-based NIC. It means that the CPTR replaces the traditional CNN-based

encoder with a transformer. Whereas, like the DETR and the ViT, CPTR employs the traditional

transformer architecture [32] either. It means that the CPTR has the same problems to which the

DETR and the ViT face. The traditional transformer obtains a huge time-complexity when the image

resolution is giant either and is poor to extract the local features from the images, so-called finer-level

features. To remedy these drawbacks, researchers published the Swin Transformer [20] and Vision

Outlooker (VOLO) [38]. In particular, the VOLO firstly obtained accuracy in ImageNet-1K image

classification, which exceeds 87%. In this case, we provide our full-transformer-based architecture

called Caption and Answering Transformer (CATR). It is consists of a VOLO-based encoder and a

traditional transformer-based decoder. Meanwhile, we propose a two-decoders architecture to make

the information in the visual and linguistic context can be exchanged.

To sum up, we are looking forward to modifying the CPTR architecture in the following way:

• Apply the Vision Outlloker to remedy the lack of finer-level feature extracting capability of the

traditional transformer-based vision encoder.

• Design a new comparable full-attention-based Neural Image Captioning architecture.

As for the remaining parts, the section 2 will cover some previous Neural Image Captioning ar-

chitectures. The section 3 will be theoretical introduction of our CPTR architectures. The section 4

and 5 will be the results, analysis and discussions of our experiments. In the end, the section 6 covers

the conclusions of our final thesis.
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2. Background

With the development of the Image Caption and Vision Questions Answering during the past

five years, the Neural Image Caption Generator (NIC) [33] is the first CNN-RNN-based sequence to

sequence architecture to tackle Image Captioning. Afterward, visual attention [34] has been proposed

to combine with the NIC. Moreover, with a deeper understanding of the visual attention mechanism,

the visual sentinel-based NIC [21] has been published. The Faster-RCNN-based [27] Bottom-Up and

Top-Down Attention NIC [1] come to the public to modify the ’Hard’ visual attention. Due to the

transformer being quite popular in both Computer Vision and Natural Language Processing regions.

More researchers have started paying attention to how to generate a good NIC with the transformer

architecture [19].

2.1. Neural Image Caption Generator

The Neural Image Caption Generator (NIC) is the first Neural Network-based architecture to deal

with Image Captioning. Before NIC, all the models are heavily human-designed. It means that all

of them have poor generalization capabilities when the evaluating distribution is not suitable for the

human-designed technique. Compared to all the human-designed architectures, the NIC established

a new state-of-the-art (SOTA) performance at that time, which is a 27.7 BLEU-4 score on the COCO

dataset.

To successfully deploy the backpropagation in training the NIC, [33] proposes an optimization

target which is still applied right now. Literature speaking, the target is to obtain parameters of the

NIC that can maximize the probability of the correct description of the input image. The formulation

is shown in 1.

θ∗ = argmax
θ

∑
(I,S)

log p(S|I; θ) (1)

where θ∗ is the optimum, θ is the parameters of the NIC, I is the image and S is the sentence. Since S

represents any sentence and we can produce the word t only when we obtain the previous t−1words.

Therefore, the log p(S|I) can be described like formula 2.

log p(S|I) =
N∑
t=0

logp(St|I, S0, ..., St−1) (2)
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where Si is the ith word in the sentence S.

The architecture of the NIC is pretty simple, illustrated in figure 2, it consists of a CNN-based en-

coder and an LSTM-based decoder. The output of the encoder will be unfolded into a one-dimensional

vector and treated as the initial hidden state in the first time step of the LSTM. As for the convolutional

encoder, the NIC chose the InceptionNet [31], so-called GoogleNet, to extract the visual embeddings

from the input image. Due to the InceptionNet has an outstanding performance to extract the visual

features from different scales. After getting the visual embedding, the LSTM is applied to generate

the description of the image word by word. NIC only deployed one-layer and one-directional LSTM

to predict the descriptions. The LSTM unit is illustrated in figure 1.

Figure 1: The architecture of the LSTM unit.

where i represents the ith time step, ci is the value of the cell gate,mi is the value of the output, xi is the

input data, ii is the input gate, fi is the forget gate and ot is the output gate. The LSTM provides two

categories of activation functions: sigmoid activation function (σ) and tangent hyperbolic activation

function (tanh). The definitions of each gate in the LSTMare demonstrated as following formulations.

it = σ(Wixxt +Wimmt−1) (3)

ft = σ(Wfxxt +Wfmmt−1) (4)

ot = σ(Woxxt +Wommt−1) (5)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxxt +Wcmmt−1) (6)

mt = tanh(ct)⊙ ot (7)
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where all the W• are the learnabel weights of the LSTM unit and ⊙ is the element multiplication.

Furthermore, a softmax layer receives the outputmt and converts it into the probabilities of eachword

in the dictionary. To yield the output word, the argmax method will choose the word corresponding

to the maximum likelihood. Whereas, to generate a more explainable description, the NIC deploys

the Beam Search algorithm with a beam of size 20. It means that, for each time step, the NIC will

output 20 top-probability words as the results.

Figure 2: The architecture of the Neural Image Caption Generator.

In accordance with figure 2, the one-hot coding word representations will be fed into a word

embedding layer to generate a more reasonable word vector description. In short, the main pipeline

of the NIC can be rewritten as the following formulations.

xv = Inception(I) (8)

xt = WeSt, t ∈ 0...N − 1 (9)

ct = LSTM(xt), t ∈ 0...N − 1 (10)

where xv is the visual embedding of the image I , xt is the input word embedding of the tth time step,

We is the word embedding weight, and ct is the output of the tth time step.

2.2. Neural Image Caption Generator with Visual Attention

Although the traditional NIC establishes a new state-of-the-art at that time, it still suffers from data

redundancy. The original NIC pays the same attention to all regions in the image when generating each
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word in the caption. With the development of the attention mechanism [2] [22] in NLP aspects, the

visual attention-based NIC [34] has been issued establishing a new state-of-the-art on the Flickr8k,

Flickr30k, and COCO datasets.

The main pipeline of the visual attention-based NIC is similar to the traditional one. The first

difference is that visual attention-based NIC implements an attention mechanism between the CNN-

based encoder and RNN-based decoder. The other difference is that visual attention-based NIC does

not employ the output vector of the fully-connected layer in the CNN. In contrast, it applies the output

feature maps from the deep convolutional layer to be the visual embedding. It only unfolds the visual

embedding on the channel-wise to generate L visual embedding vectors a = {a1, a2...aL}, where

ai ∈ RD andD = width ∗ height. After obtaining the visual embedding vector from the CNN-based

encoder, the visual attention-based NIC will feed it into an attention block to compute the attention

weight. This attention weight will multiply with the visual embedding vector later to yield visual

context. Afterward, the visual context will be concatenated with the current input word embedding

and the previous time step’s hidden state to be the input of the LSTM. The mathematical definitions

of the computations in the attention block are shown in the following formulations.

eti = fatt(ai : ht−1) (11)

αti =
exp(eti)

L∑
k=1

exp(etk)

(12)

∽
zt = ϕ(ati, αti) (13)

where eti is the partial attention weight of the ith visual embedding vector in the tth time step, fatt is

a linear layer to compute the partial attention weight, ” : ” means concatenation, ai is the ith visual

embedding vector, ht−1 is the hidden state of the LSTM in the previous time step, αti is the attention

weight of the ith visual embedding vector in the tth time step, ∽
zt is the visual context of the tth time

step, and ϕ is the attention function to compute the visual context.

The function ϕ(•, •) defines whether the applied attentionmechanism is the ”Hard” attention or the

”Soft” attention. In the ”Hard” attention, after obtaining the attention weights by deploying formulas

11 and 12, each visual embedding vector ai will be assigned a one-hot vector which consists of the

dictionary. If the wordSt has to pay attention to the corresponding region ai, the related elements in the
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one-hot vector of the ai will be set to be one. In this case, each word will be forced to pay attention to

fixed regions in the image. Afterward, the one-hot vector will be combined with the attention weightα

to compute the visual context. Because the one-hot vector is manually designed, the ”Hard” attention

cannot be trained by the traditional backpropagation. Due to the ”Hard” attention is not related to our

Captioning and Answering Transformer, more details are in [34]. As for the ”Soft” attention, it aims

to let the neural model consider where to focus on in the image by itself. The ϕ(•, •) function employs

the multiplication between the visual embedding vectors and attention weights. Therefore, the ”Soft”

attention is easy to train by applying the backpropagation. The formula of the ”Soft” attention-based

function ϕ is shown in 14.

ϕ(ati, αti) =
L∑
i=1

αtiati (14)

The architecture between traditional NIC [33] and visual attention-based NIC [34] is quite similar.

The visual attention-based NIC consists of a CNN-based encoder and an LSTM-based decoder either.

The architecture of the LSTM is the same as in figure 1. However, the xt is made up of the visual

context ∽
z, the word embedding e, and the previous hidden state of the LSTM. The main architecture

of the visual attention-based NIC is demonstrated in figure 3.

Figure 3: The architecture of the Visual Attention-based Neural Image Caption Generator.
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2.3. Neural Image Caption Generator with Visual Sentinel

Whatever the ”Hard” or ”Soft” visual attention, all the visual attention-based NICs consider the

visual attention for every generated word in the description. However, the prediction of some words in

the description, such as ”and”, ”of”, ”the”, and so on, is not requiring visual information. In this case,

the Visual Sentinel has been issued. It determines what kinds of words do not have to see the image,

so-called visual embedding. This new visual attention-based NIC is called Neural Image Caption

with Visual Sentinel [21]. This new NIC establishes a new state-of-the-art comparing with the Visual

Attention-basedNIC. In Visual Sentinel-basedNIC, the encoder is the advanced CNN, and the decoder

is made up of one LSTM and one Multi-Layer Perceptron (MLP). Unlike the Visual Attention-based

NIC, the Visual Sentinel Attention block implements between these two decoder layers. Meanwhile,

the visual sentinel is employed to figure out whether theMLP has to predict the current word according

to the visual context or not. The main pipeline of this visual sentinel-based model is a sequence to

sequence model either. The illustration of the Visual Sentinel-based NIC is shown in figure 4.

The Visual Sentinel Attention block consists of traditional Visual Attention in figure 3 and the

Visual Sentinel. The visual attention part is ”Soft” attention which is approximately the same as

formulas 11, 12, and 13. The only difference is the method to obtain partial attention eti. The modified

formula is shown in equation 15.

eti = W T
h tanh(Waati +Wght) (15)

where W• are the learnable weights. Due to the Vision Sentinel Attention block being deployed be-

tween one LSTM layer and one MLP layer. The applied hidden state in visual attention is the current

hidden state from the LSTM layer. During generating the hidden state involved in the computation of

the visual attention, the LSTM layer will yield out the Visual Sentinel either. A new gate called the

sentinel gate receives the word embedding and the previous hidden state to generate the sentinel in

the LSTM layer. The mathematical definitions are shown in the following formulations.

gt = σ(Wxxt +Whht−1) (16)

st = gt ⊙ tanh(mt) (17)
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where gt is the sentinel gate in the tth time step, W• is the learnable weights, xt is the input word

embedding in tth time step, ht−1 is the hidden state in previous time step, mt is the output in the

tth time step, st is the visual sentinel in the tth time step, and ⊙ is the element multiplication. To

employ the visual sentinel st, it will participate in the computation of the attention weights α. The

Visual Sentinel Attention blockwill concatenate the visual embedding vectors a, the hidden state of the

LSTM ht, and the visual sentinel st to compute the attention weight. Afterward, the whole attention

weight will be separated into αi where i ∈ 1...L and βt. All the αi will be used to multiply with the

visual embedding vectors to produce the visual context ∽
zt. Meanwhile, the βt is employed to indicate

whether feed the visual context into the MLP layer, according to the formula 18.

zt = βtst + (1− βt)
∽
zt (18)

where zt is the final context which is fed into the MLP layer.

As for the Visual Sentinel Attention-based NIC, the input word embedding xt has two parts. One

is the standard word embedding in the tth time step. Another one is the global visual embedding

ag which is the sum of all the visual embedding vectors. Therefore, the sentinel gate can extract

the relationships between the visual and linguistic information to check whether the visual context is

necessary for predicting the current word. Afterward, the sentinel weight βt will further aggregate all

this information to control the proportion of the visual context in the final context.

Figure 4: The architecture of the Visual Sentinel Attention-based Neural Image Caption Generator.
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2.4. Neural Image Caption Generator with Bottom-Up and Top-Down Attention

If the visual sentinel extends the ”Soft” visual attention, then the Bottom-Up Visual Attention

will extend the ”Hard” visual attention. These architectures are called Bottom-Up and Top-Down

Attention-based Neural Image Caption Generator [1]. The essence of the ”Hard” visual attention is to

assign the description’s words to the image’s fixed regions. However, [34] clarifies that the traditional

”Hard” visual attention is hard to train with the backpropagation. To solve this drawback, the Bottom-

Up attention publishes a novel view to implementing the ”Hard” attntion, directly obtaining the fixed

regions that have to be paid attention to in the image by using the object detection algorithm. In this

case, both the ”Hard” and ”Soft” visual attentions can be implemented by neural network architectures.

Therefore, the whole model can be trained by backpropagation. In [1], the Faster-RCNN [27] has been

applied. Whereas all the object detection neural networks can be transplanted to achieve the Bottom-

Up visual attention, such as You Only Look Once Series (YOLO) [24] [25] [26] [3].

2.4.1. Faster-RCNN-based Bottom-Up Visual Attention

The significant theory of the Bottom-Up Visual Attention is to obtain the fixed regions that need to

be paid attention to in the image. The Faster RCNN is the most used module in the Bottom-Up Visual

Attention pipeline. Faster Region Convolutional Neural Network (Faster RCNN) [27] is a typical

two-stages object detection architecture. The first stage aims to find out all the Regoins-of-Interests

(RoI) that may contain the objects. The second stage fine-tunes all the RoIs to yield all the accurate

locations of the objects.

Unlike the traditional Region Convolutional Neural Network (RCNN) [10], the Faster RCNN is a

full-convolutional neural network. It employs the Region Proposal Network (RPN) in Fast RCNN [9]

to generate the RoIs in the first stage. RPN receives the feature maps from the CNN-based backbone

network and applies them into two separated data flows to generate the RoIs, according to 9 manu-

ally desigend Anchor Boxes. One is called label regression that generates the confidence score and

classification accuracy for each RoIs. Another one is named bounding box regression that fine-tunes

all the RoIs. To indicate the positive and negative RoIs instances, the RPN employs the Intersection

over Union (IoU) between the predicted RoIs and Ground Truth to be the criterion. The target of the

RPN is to yield the RoIs rather than the accurate locations of the objects. Therefore, as long as the

IoU is larger than the threshold and the confidence score is above 50, the RoI will be treated as a pos-
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itive sample, vice versa. The non-maximum suppression (NMS) mechanism is used to fine-tune the

RoIs either. Eventually, the RPN will offer 300 high-quality RoIs into the second stage of the Faster

RCNN.

In the second stage, the 300 high-quality RoIs will crop the corresponding regions from the feature

maps. Meanwhile, Faster RCNN applies RoI Align rather than the RoI pooling in the Fast RCNN [9] to

convert different scales and sizes RoIs into the standard ones. Due to the feature maps being extracted

from the raw image, whichmeans there is a scales transformation between them, and the coordinates of

the RoIs are not the integers sometimes. Whereas the RoI pooling ceils or floors all the float numbers

into the most approximate integers. It means that some errors occur after applying the RoI pooling in

the Fast RCNN [9] to convert the RoIs into standard ones.

Meanwhile, these errors will be enlarged when mapping the RoIs from the feature maps to raw

images. However, the RoI Align remedy this drawback. It maintains all the float numbers and uses

bilinear interpolation to get the pixel value at the position of the corresponding float number. After

crop all the RoIs, the RoI Align will split the RoIs into some standard windows and apply the max

pooling for each window to produce standard-sized RoIs. Atferward, the standard-sized RoIs will be

fine-tuned to generate the accurate locations of the objects in the raw images.

All of these locations are the targets of Bottom-Up visual attention. In [1], the Bottom-Up visual

attention deploys the Faster-RCNN with the Residual Network-based backbone [11] to generate all

the attention regions. All these regions contain both background and front-ground in the raw images.

All of them will be unfolded as the visual embedding vectors ai where i ∈ 1...L, and fed into the

LSTM-based decoder.

2.4.2. LSTM-based Top-Down Visual Attention

The essence of the Top-Down Visual Attention is the ”Soft” Visual Attention. In [1], the decoder

consists of one-directional and two-layers LSTM and applies the ”Soft” attention in [34] between two

LSTM layers. The first LSTM layer is called Top-DownAttention LSTM, which receives the previous

hidden state of the second LSTM layer, the visual embedding vectors, andword embedding as the input

to generate the input of the visual attention blocks. Another LSTM layer is named Language LSTM,

which yields the prediction of the word in the description. The mathematical definitions of visual

attention are shown in formulations 11, 12, and 13. The entire architecture of the Bottom-Up and
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Top-Down Visual Attention-based NIC is illustrated in figure 5.

Figure 5: The architecture of the Bottom-Up and Top-Down Visual Attention-based Neural Image
Caption Generator.

2.5. Neural Image Caption Generator with Transformer

With the development of the attention mechanism, Google has published a fantastic self-attention-

based novel sequence to sequence architecture named Transformer [32]. The essence of almost all the

attention mechanisms is that apply a query to look through the key of the values and compute the

attention weights for values between the query and key. The self-attention highlights this process by

directly employing three linear layers to compute the query, key, and value from the input data and

compute the attention between all the time steps parallelly, according to formulation 19.

Self − Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (19)

where Q, K, and V are the query, key, and value that calculate from the raw sequential data. Their

dimensions are l×d, where l is the number of the time step and d is the dimension of each data in each

time step. By applying the self-attention mechanism to replace the traditional LSTM, each time step

of the sequential data can be computed parallelly, because self-attention is only some dot-production.

The transformer employs multi-head self-attention to enrich the attention representations which

combines plenty of different self-attention heads. Each head contains one independent self-attention

based on formula 19. The transformer absorbs the excellent residual connection idea in the ResNet

[11]. After each multi-head self-attention block, there is a residual connection and a layer normaliza-

tion. At the end of each Transformer block, the output of the multi-head self-attention will be fed into
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a feed-forward network (FFN), and there is a residual connection and layer normalization after the

FFN either. The architecture of the Transformer is demonstrated in figure 6.

Figure 6: The architecture of the Transformer, , where N is the number of the transformer blocks.

There are two remaining parts of the transformer which are positional embedding and multi-head

masked self-attention. Due to the self-attention is only some dot-productions, it means that even the

order of each time step in the input data is not correct, the self-attention can process the data either.

Therefore, the cosine and sine-based positional embedding has been applied to indicate the order in

the raw data. The formulas 20 and 21 show the definitions of positional embedding.

PE(pos, 2i+ 1) = cos(
pos

10000
2i

dmodel

) (20)

PE(pos, 2i) = sin(
pos

10000
2i

dmodel

) (21)

where PE is the positional embedding, pos is the position index of each time step in the data, i is the

dimension index of each time step’s data, and dmodel is the dimension of each time step’s data. The

illustration of the positional embeeding is shown in figure 7.

As for the multi-head masked self-attention, it only is employed in the decoder of the transformer.
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Figure 7: The illustration of the positional embedding sampel.

Because it is unreasonable to use the i+ 1th time steps information to predict the ith time steps infor-

mation. Therefore, it is necessary to avoid the attention of the future time step’s data when predicting

the previous time step’s data. In [32], they designed an attention mask, like figure 8, where the values

in the purple region are zeros and the ones in all yellow areas.

Figure 8: The illustration of the attention mask.

When the transformer becomes popular in the Natural Language Processing region, researchers are

interested in transplanting it into the Computer Vision aspect. There are plenty of efficient transformer-

based vision architectures, such as the Detection Transformer (DETR) [4] for object detection tasks,

Vision Transformer (ViT) for image classification tasks. In terms of the Image Caption task, the

Caption Transformer (CPTR) firstly employs the full-transformer-based sequence to sequence archi-

tecture. The main pipeline of the CPTR is similar to the traditional transformer, which is illustrated

in figure 6. However, the CPTR does not apply the sine and cosine-based positional embedding. It

deploys the learnable positional embedding like the DETR. Except for positional embedding, almost
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all the visual transformers like DETR, ViT, and CPTR apply the patch embedding to preprocess the

input raw image. This progress will separate the raw image into plenty of fixed-sized windows. Each

window will be unfolded into a one-dimensional vector to simulate each time step’s data.

In this case, all the vision transformers with the traditional transformer’s architecture (Figure 6)

will face twomain problems. One is the considerable time complexity of the dot-production in the self-

attention. Because the image resolution determines the dimension of each unfolded patch vector, if

the resolution is too huge, then the dimension of the unfolded patch is enormous either. Afterward, the

dot-production between each patch requires giant time complexity. Another one is that the traditional

transformer is poor to extracting the local features from the image because the traditional transformer

only can compute the attention between each patch. As for the features inside the patch, the traditional

transformer is hard to extract.

Inspired by convolution, the Swin Transformer [20] tries only to compute self-attention inside

fixed-sized windows. Meanwhile, it employs the shifted-window self-attention to exchange the loca-

tions of each window by rolling up the windows in the bottom to the top and rolling right the windows

in the left to the right to extract the features between two adjacent windows. Via these two novel

techniques, the Swin Transformer reduces the time complexity of the transformer-based architecture

in the Computer Vision region. It remedies the drawback of poor local features extraction capability at

the same time. However, currently, a new visual attention technique has been issued called outlook-

attention [38]. It is pretty fantastic in handling the ImageNet-1k classification tasks. There are more

details about it in our proposed theory.

3. Theory

Our proposed thought of the Captioning and Answering Transformer (CATR) can be seen as a

full-transformer sequence to sequence architecture. The encoder consists of the outlook-attention-

based Vision Outlooker [38] that generates the visual embedding vectors. The decoder consists of

two stages. One stage is the word2vec to yield the word embedding. Another stage is the traditional

transformer-based decoder to predict the description of the image. The entire pipeline is demonstrated

in the figure 9. The input of the CATR is a raw image and the output is the description of the input

image.
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Figure 9: The architecture of the Captioning and Answering Transformer, whereND is the number of
the decoder blocks.

3.1. Vision Outlooker based Encoder

Vision Outlooker is an excellent attention-based architecture that establishes 87.1% top-1 accuracy

on the ImageNet-1k classification tasks for the first time. It consists of two stages. One is the outlook-

attention layer followed by a Feed Forward-Network (FFN). Another one is the self-attention-based

traditional transformer. Inspired by convolution, the outlook-attention realizes that the center pixel in

the 3× 3 receptive field has enough information to compute the attention weights for all the adjacent

pixels.

Meanwhile, to prevent the huge time complexity of the dot-production in the self-attention, outlook-

attention employs two linear layers to yield the attention and value directly. Afterward, the value will

unfold like the convolutional layers to obtain the 3 × 3 receptive regions for each pixel. The mathe-

matical definition is shown in the following formulations.

α = Softmax(AttentionLayer(P )) (22)

value = Unfold(V alueLayer(P )) (23)

output = Fold(α ∗ value) (24)

where α is the outlook-attention weights, value is the outlook-attention value, output is the outlook-
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attention output, and P is the patch embedding of the input image. Assume the dimension of the patch

embedding is (W,H,C) whereW is the width,H is height, and C is the number of the channel, after

V alueLayer and Unfold, the dimension will become (W ∗ H,K ∗ K,C) where K is the window

size which equals 3 in our model. AfterAttentionLayer, the dimension of the α will be (W ∗H,K ∗

K,K ∗K). In this case, the dimensions between the output of AttentionLayer and V alueLayer are

matched to complete the dot-production. After folding, the dimension of the output will be the same

as the input.

Similar to the traditional transformer, the Vision Outlooker (VOLO) consists of plenty of outlook-

attention heads. Each head contains an independent outlook-attention. The mathematical definition

of the outlooker block is shown in formulas 25 and 26.

∽
x = Outlooker(LN(x)) + x (25)

Z = MLP (LN(
∽
x)) +

∽
x (26)

where z is the output of the outlooker block, ∽x is the output of the multi-head outlook-attention, x is

the input of the outlooker block, LN is the leyar normalization, andMLP is the Feed Forward Layer.

The architecture of the Vision Outlooker is demonstrated in the figure 10. The same as the DETR, the

positional embedding of the vision outlooker is trainable.

The target of the outlook-attention is to remedy the drawback of the self-attention in extracting

local features. In order to obtain both the finer and coarser features, both multi-head outlook atten-

tion and multi-head self-attention have been combined to form the entire architecture of the Vision

Outlooker.

3.2. Transformer based Decoder

In accordance with figure 9, our decoder has two main stages. One is the typical decoder of the

transformer that contains one multi-head self-attention and one multi-head cross self-attention. Be-

cause the decoder aims to predict the sentence of the Image Caption, similar to the machine translation,

it is significant that the future linguistic information can not be applied to predict the previous linguis-

tic information. The attention mask, like figure 8, employs in our transformer-based decoder either.

Meanwhile, similar to machine translation, our task is to analyze the input image and yield the cap-
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Figure 10: The architecture of theVisionOutlooker, whereNO andNT are the number of theOutlooker
and Transformer blocks.

tioning or answering, a translation mission either. It is necessary to translate visual information into

linguistic information. Therefore, the architecture to permit the information exchange for both visual

context and linguistic context is needed. As for the past five years of research, visual attention [34] and

the visual sentinel [21] have been published to implement this critical part. In our CATR, like CPTR,

we applied multi-head cross self-attention to tackle this mission. It will receive the visual embedding

vectors as the key and value, and linguistic embedding as the query to compute the self-attention, to

automatically learn the relationships between the visual and linguistic context.

The visual encoder in figure 10 employs the Vision Outlooker [38] to extract the finer-level fea-

tures from the image, so-called local information. It deploys a transformer to obtain the coarser-level

information from the image, so-called global context. Similar to the image, the sentence contains local

and global information either. The global information is the linguistic context that can be analyzed by

transformer very well. The local features of the sentence can be seen as the relationships between each

word. For example, ’apple’, ’banana’, ’watermelon’ are fruits, ’cat’ and ’dog’ are pets. The progress

in extracting the relationships between word and word is called word embedding. In our CATR, the

traditional word to vector (word2vec) embedding training pipeline has been applied.
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4. Implementation and Experimental Result

As for our project, in the first stage, we aimed to figure out the Road Surface Marking Recognition

task, to check whether the transformer-based architecture is useful in processing images. It can be

seen as an object detection mission. During the experiments, we realized that the transformer has an

excellent capability to complete the Computer Vision tasks. Therefore, to dig into the performance of

the transformer-based architecture in both Computer Vision and Natural Language Processing regions,

we proposed the second stage, which are Image Captioning and Vision Questions Answering. Besides,

before we go through the next stage, we completed some object detection experiments by using the

YouOnly LookOnce Serises (YOLO) [24] [25] [26] [3], Region Convolutional Neural Network Series

(RCNN) [10] [9] [27], Detection Transformer (DETR) [4], and Single Shot MultiBox Detector (SSD)

[18] on our own Road Surface dataset. The evaluation results are shown in figures 11, 12, 13, and 14.

Figure 11: The experimental results of the Faster RCNN.

Figure 12: The experimental results of the SSD.
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Figure 13: The experimental results of the YOLO version five.

Figure 14: The experimental results of the DETR.

The Detection Transformer obtained an excellent performance with a high confidence score and

high-quality bounding boxes in the experiments of the first stage. This is why we thought the trans-

former is more powerful to handle some complicated tasks and move to the second stage. More

experimental results of stage one are shown in Appendix A.

4.1. Training Pipeline

In terms of the stage two, we implement five types of Captioning and Answering with Trans-

formeR (CATR) architecture with different sizes, according to the different Vision-Outlookers. Table

1 demonstrates all the parameters’ settings of all these five types of CPTR.

We evaluate our proposed architecture onMicrosoft COCO2014 dataset (MSCOCO) [17] which is

the most popular benchmark for Image Captioning. In the MSCOCO 2014 Dataset, there are 82783,

40504 and 40775 images for training, validation and test datasets. As for each image, there are 5

or more label captions. However, we only pick up the first 5 captions of each image to train the

architecture. The validation dataset will be used during the training to check the overfitting situation

and offline evaluations.
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Modules Specification Type-1 Type-2 Type-3 Type-4 Type-5

Encoder

Patch Embedding 8× 8 8× 8 8× 8 8× 8 8× 8

Outlook-Attention (28× 28)

head: 6, stride: 2 head: 8, stride: 2 head: 8, stride: 2 head: 12, stride: 2 head: 12, stride: 2
kernel: 3× 3 kernel: 3× 3 kernel: 3× 3 kernel: 3× 3 kernel: 3× 3

mlp: 3, dim: 192 mlp: 3, dim: 256 mlp: 3, dim: 256 mlp: 3, dim: 384 mlp: 4, dim: 384
×4 ×6 ×8 ×8 ×12

Patch Embedding 2× 2 2× 2 2× 2 2× 2 2× 2

Self-Attention (14× 14)
#heads: 12 #heads: 16 #heads: 16 #heads: 16 #heads: 16

mlp: 3, dim: 384 mlp: 3, dim: 512 mlp: 3, dim: 384 mlp: 3, dim: 768 mlp: 4, dim: 768
×14 ×18 ×28 ×28 ×36

Decoder

Word Embedding (word2vec)

Self-Attention
#heads: 8 #heads: 8 #heads: 12 #heads: 12 #heads: 16

mlp: 3, dim: 384 mlp: 3, dim: 512 mlp: 3, dim: 512 mlp: 3, dim: 768 mlp: 4, dim: 768
×8 ×8 ×12 ×12 ×16

Total Layers 26 32 48 48 64

Table 1: The architecture information of all five types of Captioning andAnswering with TransfromeR
(CATR).

We train the CATR in an end-to-end fashion, whereas, only the parameters of the transformer-based

decoderwill be updated, due to the device limitation. The outlooker-based encoder will be intialized by

the corresponding VOLO [38] architecture which pre-trained from the ImageNet-1k dataset, without

the classes-prediction layer. The input images of the CATR are resized to 224 × 224 which is the

standard input resolution of the VOLO [38].

Due to the transformer is a quite large architecture, it is necessary to train it with a small learning

rate at the very begining, to avoid the gradient fall into the local optimum too fast. Hence, we applied

the Noam learning rate scheduler in [32]. The mathematical definition of the Noam learning rate

scheduler is shown in equation 27.

lr = dim−0.5 ∗min(iteration−0.5, iteration ∗ warmUp−1.5) (27)

where lr is the learning rate for the next iteration, iteration is the current iteration’s number, dim is

the hidden dimension of the decoder, and warmUp is the learning rate increasing period of the Noam

scheduler. After employed the Noam learning scheduler, the learning rate will be increased from zero

utill the iteration reaches the warm up setting, according to the equation 27. As long as the iterations

beyond the warm up setting, the learning rate will be decreased respectively.

During our training pipeline, we employ the Adam optimizer with β1 = 0.9, β2 = 0.98, ϵ = 10−9,

momentum = 0.9, and weight decay = 0.00005, and the cross-entropy loss with label smoothing

set to be 0.1. Meanwhile, we set the batch size = 32 and train the whole architecture in just one RTX

3090 GPU. Due to the device limitation, we only are able to complete the training of the Type-1 CATR.

As for each epoch, the training takes approximate 30 minutes, and the overall number of epochs are
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100. Hence, the total training for one demo will cost about 2 days. Because the batch size = 32, each

epochs will contain 2587 iterations. Thus, the warm up of the Noam scheduler sets to be 3000. The

visible learning rate variation is shown in figure 15.

To overcome the overfitting problems, we not only apply the label smoothing and weight decay

methods, but also employ two kinds of dropout blocks which are the attention dropout and projection

dropout. The attention dropout is applied after the computation of attention score. The projection

dropout is employed after each Feed Forward Layer. Both of the dropout rate are set to be 0.1.

Figure 15: The visible learning rate variation.

In terms of the evaluation, the trained CATRwill be split into Outlooker-Encoder and Transformer-

Decoder. The encoder will only receive the input image just once to extract the vision features. The

same vision features will be applied into Transformer-Decoder every time, till the decoder predicting

the end token. To generate the captions, we apply the beam search with beam size = 3. Due to the

limitation of the device, we only can evaluate the images in the validation set and test set one by one.

Thus the evaluation pipeline will cost about 1.5 days for each dataset. The overall time consumption

of the evaluation is about 3 days.

4.2. Experiments Analysis

Due to we only are able to train the architecture with just one RTX 3090 GPU, we can only com-

plete the training of the Type-1 CATR. We train totally 10 Type-1 CATRs, and pick up the best one to

finish the evaluation. After training, we apply the best architecture to check the overfitting situation
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by the validation dataset. Both of the training and validation results are shown in table 2. During the

training and validation, the loss, accuracy, and 4 Bi-Lingual Evaluation Understudy scores (BLEUs),

which are uni-gram, bi-gram, tri-gram and fourth-gram, are applied to be the metrics to check the

performance of the models.

Model Metrics Train Validation

Type-1 CATR

Loss 2.5176 2.6181
Accuracy 76.90 75.08
BLEU-1 81.63 80.29
BLEU-2 71.20 69.10
BLEU-3 62.00 59.40
BLEU-4 54.68 51.74

Table 2: The training results of the Type-1 CATR.

According to the training results, almost all the differences between train and validation results

in each metrics are smaller than 3 percent. This difference criterion is acceptable. It means that, the

demo of trained Type-1 CATR dose not occur the overfitting problems. However, during the training,

the decoder will receive the whole captions to be the input rather than the start token. Whereas, when

creating the demo of generating the caption of one image, the whole sentence is unknowable. We

can only input the image and the start token, to let the start token randomly sampled the next word

according to the input image, till predicting the end token, the caption will be generated. Therefore,

the training and validation results are inefficient to check the performance of the trained architecture.

It is necessary to retest the model.

During the test, we set the trained arhcitecture into evaluation mode and apply the validation set

to complete the offline performance checking, due to the MSCOCO dataset only provides the annota-

tions of the training and validation dataset. The test dataset can only be used for online performance

checking. The evaluation metrics of the test are the 4 BLEU scores, METEOR, ROUGE and CIDEr

scores [5]. The test results of the CATR and the previous Neural Image Captioning generator are

demonstrated in table 3. We compared the trained Type-1 CATR with the CPTR [19], LSTM [33],

SCST [28], LSTM-A [37], RFNet [15], Up-Down [1], GCN-LSTM [36], LBPF [23], SGAE [35],

ORT [12], and ETA [16].

It is obvious that our Type-1 CATR can beat some previous CNN-and-RNN-based Neural Image

Caption generator, such as LSTM, SCST and LSTM-A. It means our Type-1 CATR has learnt some

knowledges of the image captioning generation. However, comparing with all the other Neural Image
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Caption generator, especially the CPTR, our Type-1 CATR still exist some performance gaps. Com-

paring with the CPTR, the BLEU-4 performance gaps of our Type-1 CATR is almost 4 percent. The

gap for CIDEr even reaches almost 9 percent. Hence, in this stage, the current SOTA full-transfomer-

based architecture still outperforms our Type-1 CATR. Figure 16 demonstrate some demos of our

Type-1 CATR. More Image Captioning demos are shown in Appendix B.

Architecture BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr
CNN+RNN

LSTM [33] - - - 31.9 25.5 54.3 106.3
SCST [28] - - - 34.2 26.7 55.7 114.0

LSTM-A [37] 78.6 - - 35.5 27.3 56.8 118.3
RFNet [15] 79.1 63.1 48.4 36.5 27.7 57.3 121.9
Up-Down [1] 79.8 - - 36.3 27.7 56.9 120.1

GCN-LSTM [36] 80.5 - - 38.2 28.5 58.3 127.6
LBPF [23] 80.5 - - 38.3 28.5 58.4 127.6
SGAE [35] 80.0 - - 38.4 28.4 58.6 127.8

CNN+Transformer
ORT [12] 80.5 - - 38.6 28.7 58.4 128.3
ETA [16] 81.5 - - 39.3 28.8 58.9 126.6

Full Transformer
CPTR [19] 81.7 66.6 52.2 40.0 29.1 59.4 129.4

Our Type-1 CATR 78.9 59.3 47.6 35.9 27.5 56.2 120.3

Table 3: Performance comparisons on MSCOCO of Type-1 CATR and on COCO Karpathy test split
[14] of other models.

5. Discussions

During our reasearching, it is obvious that the transformer has a great potential in both Computer

Vision and Natural Language Processing aspects. Even though the smallest architecture in our CATR

architecture can still get some performance. The current SOTA CPTR displays a better evidence for

this either. According to the training results, although our proposed architecture still obtains some

performance gaps, compared with current SOTA results, we still think it is possibility to figure out

this gap in the future.

5.1. Problems

Through the results in table 3, our Type-1 CATR architecture is not performing very well, com-

pared with the other Neural Image Captioning generators. There are four reasons may caused this

situation: 1) In this stage, our trained architecture is the Type-1 CATR. It means the Vision-Encoder
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employs the Type-1 Vision-Outlooker to be the vision features’ extractor. The top-1 accuracy for the

ImageNet classification task of the Type-1 Vision-Outlooker is only 84.2 percent, which is even lower

than the accuracy of LV-ViT-S [13] (84.4 percent). However, the current SOTA CPTR applies the ViT

to initialize the Vision-Encoder. Therefore, comparing with the vision features’ extraction capability

between our Type-1 CATR and CPTR, our model is poorer. 2) The current SOTA CPTR commits

the upsampling of the input image before training, which means they will crop the raw image in the

MSCOCO dataset into a higher resolution (384× 384) than the standard resolution (224× 224). The

higher resolution means that the Vision-Encoder of the CPTR can see finer features than ours, such

as some tiny objects. Whereas, due to the device limitation, we are not able to train the architecture

with the higher resolution. 3) Even though both of our Type-1 CATR and current SOTA CPTR apply

the MSCOCO 2014 dataset to do the training, the CPTR employs a more efficient split of MSCOCO

dataset for Image Captioning task called ’Karpathy Splits’ [14]. This spilt contains a larger training

dataset than the standard training dataset. However, as for some large architecture like transformer,

the large training dataset can fine-tune a more stable architecture. 4) After initializing the Vision-

Encoder by ViT, the CPTR will still fine-tune the parameters of the Vision-Encoder. Whereas, due to

the limitation of the device, if we fine-tune the Outlooker-based Encoder either, the time consumption

is intolerable.

5.2. Advantages

Even though there are still some performance gaps of our Type-1 CATR, we still think our thought

of the CATR is still correct. Because all of above problems can be solved by training the architecture

with a more powerful GPU-Matrix. Due to the Type-1 CATR has already obtained some performace,

we still have expectation for the Type-5 CATR. Because of the powerful capabilities of the attention-

based architecture, so-called transformer, and the fantastic experimental results of the DETR on the

Road Surface Marking Detection project, we are confident that our proposed Captioning and Answer-

ing Transformer (CATR) will perform greate either. The reason is shown below: 1) Our proposed

CATR deploys the Vision Outlooker (VOLO) to replace the traditional transformer-based Vision En-

coder in the Caption Transformer (CPTR) [19] to remedy the drawback of the typical transformer

in extracting the local visual features. Meanwhile, VOLO has been proved that be excellent for the

ImageNet-1k classification tasks. 2) Our proposed CATR modifies the current state-of-the-art archi-
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tecture of Caption Transformer(CPTR) by applying advanced transformer-based models.

6. Conclusions

In this final thesis, we proposed a full-transformer-based architecture to tackle the Image Caption-

ing and Vision Questions Answering tasks, called Captioning and Answering Transformer (CATR).

Based on the current state-of-the-art full-transformer-based architecture called Caption Transformer

(CPTR). We consider employing some advanced transformer-based architectures in Computer Vision

regions, which is Vision-Outlooker (VOLO) to modify the CPTR and remedy its drawbacks. Due

to the current device constraints, we have not outperformed the current SOTA results. However, via

the analysis of the CATR and CPTR, we think our researching still reveals that the CATR has a great

potential in the Image Caption task.

Figure 16: Some demos of our Type-1 CATR.
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Appendix

1. More Experimental Results

The extra results of the Signal Shot MultiBox Detector (SSD):

Figure 17: The extra experimental results of the SSD.

The extra results of the You Only Look Once version five:

Figure 18: The extra experimental results of the YOLOv5.

Figure 19: The extra experimental results of the YOLOv5.
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The extra results of the Detection Transformer (DETR):

Figure 20: The extra experimental results of the DETR.

Figure 21: The extra experimental results of the DETR.
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2. Type-1 CATR Image Captioning Demos

The extra results of the Type-1 CATR Image Captioning Demos:

Figure 22: The extra results of the Type-1 CATR Image Captioning Demos.

Figure 23: The extra results of the Type-1 CATR Image Captioning Demos.
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Figure 24: The extra results of the Type-1 CATR Image Captioning Demos.

Figure 25: The extra results of the Type-1 CATR Image Captioning Demos.

Figure 26: The extra results of the Type-1 CATR Image Captioning Demos.
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Figure 27: The extra results of the Type-1 CATR Image Captioning Demos.

Figure 28: The extra results of the Type-1 CATR Image Captioning Demos.

Figure 29: The extra results of the Type-1 CATR Image Captioning Demos.
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Figure 30: The extra results of the Type-1 CATR Image Captioning Demos.

Figure 31: The extra results of the Type-1 CATR Image Captioning Demos.

Figure 32: The extra results of the Type-1 CATR Image Captioning Demos.
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Figure 33: The extra results of the Type-1 CATR Image Captioning Demos.

Figure 34: The extra results of the Type-1 CATR Image Captioning Demos.

Figure 35: The extra results of the Type-1 CATR Image Captioning Demos.
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Figure 36: The extra results of the Type-1 CATR Image Captioning Demos.

Figure 37: The extra results of the Type-1 CATR Image Captioning Demos.

Figure 38: The extra results of the Type-1 CATR Image Captioning Demos.
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Figure 39: The extra results of the Type-1 CATR Image Captioning Demos.

Figure 40: The extra results of the Type-1 CATR Image Captioning Demos.

Figure 41: The extra results of the Type-1 CATR Image Captioning Demos.
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Figure 42: The extra results of the Type-1 CATR Image Captioning Demos.

Figure 43: The extra results of the Type-1 CATR Image Captioning Demos.
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