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Abstract 

Deep Learning [12] is a quite exciting academic researching aspect currently, which is also one of 

the main parts of modern Artificial Intelligent Technologies. One of the most significant tools in 

Deep Learning is the Neural Network [20]. Plenty of the current AI researchers focus on designing 

well-performed Neural Networks. Such as the Deep Residual Neural Network [6], the VGG [7], 

the Alex-Net [2], or some other densely connected neural networks [4]. However, all of these well-

performed neural networks are designed by human beings. It means all these kinds of neural 

networks have the fixed data-flow patterns and trivial topologies. Whereas for our actual brains’ 

neural networks, the topologies are extremely non-trivial and the data-flow patterns are random. 

Therefore, some current AI researchers start to apply the complex graphs with non-trivial 

topologies to form the neural networks and study the differences between the human-designed 

neural network and the complex-graphs-based neural network, and they also found that the 

performance of the complex-graphs-based neural network is not worse than the human-designed 

neural network. For example, the Facebook AI Research (FAIR) team’s works [9]. According to 

this circumstance, based on the FAIR’s works, we proposed our project to try to figure out the 

relationship between the topology and the performance of the neural networks. We applied the 

randomly wired complex graphs [1][3][11] into the deep learning, and we focused on the degree 

distribution at present.  
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1.Introduction 

1.1.Deep Learning and Neural Networks 

Nowadays, what we call deep learning is mainly talking about neural networks. There are plenty 

of well-performed neural networks. Such as ResNet [6], VGG [7], Alex-Net [2], and so on. The 

targets of all these human-designed neural networks are catching up or even substituting the human 

beings in some special aspects. For example, the Image Classification problem, Object Detection 

problem, and so on. 

In terms of the current neural networks, they are the data mapping from the input training data to 

the input training labels. 

Definition 1. The neural network is a mapping: 𝕄 → 𝕃 

where 𝕄 represents the input training data and 𝕃 represents the input training labels. However, the 

neural network is not generator the 𝕃 directly, it will try its best to generate the predicted 𝕃𝑝 which 

is more like the 𝕃. 

Figure 1 demonstrates the normal topology of a three layers simple neural network. 

 

Figure 1. The topology of a three-layers densely connected simple neural network 

In Figure 1, lines represent the weights and the bias, which are used to transmit the data along with 

the neural network. They are single-directional either, which means the data 𝕄  can only be 

transmitted along with the weight to 𝕃  but not transmitted back. White nodes represent the 
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computation units, which have some built-in computations to combine the training data and the 

weights. Layers are stacking by the nodes vertically; each layer would receive the data from the 

previous layer and transmit the result to the next layer. The Input layer receives the input training 

data 𝕄 and the output layer generates the predicted label 𝕃𝑝. And all the other layers between 

input and output layers are called hidden layers. Due to the graphs like Figure 1 illustrate the data-

flow patterns of the neural networks, they are also called computation graphs. Meanwhile, they are 

the most used graphs to represent the topologies of the neural networks either. Due to the weights 

and bias are single directed, the computation graph is called a directed acyclic graph (DAG) either. 

For all the neural networks, they contain two main computations which are forward propagation 

and backward propagation [20]. The forward propagation is a process to map the input training 

data 𝕄 to the predicted label 𝕃𝑝. The backward propagation is a process to optimize the weights 

and bias via the derivatives. Due to all the weights and bias are initialized randomly at the 

beginning, it is necessary to apply the backward propagation to get the best weights and bias, in 

order to make 𝕃𝑝 more like the 𝕃. 

Almost all the computations in forward propagation are inside the computation units. The normal 

pipeline of the computation units is illustrated in Figure 2. 

 

Figure 2. The normal computation pipeline of the computation unit 
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In Figure 2, there are three main computation parts which are Data normalization, Linear 

Computation, and the Activation Function [22]. The order of these three computations is random, 

whereas, generally, the data normalization and linear computation would be applied before the 

activation function. Data normalization is a process to centered the distribution of the data and 

made all the data satisfy the same distribution. There are two ways to do it, the first one is called 

input normalization which is used to normalize the input training data 𝕄 and normally applied in 

the input layer. 

Input normalization is defined as 

𝑋̃ =
𝑋 − 𝜇

𝜎
(1) 

where 𝑋 is the input data, 𝜇 is the mean value of 𝑋, 𝜎 is the standard deviation of 𝑋 and 𝑋̃ is the 

normalized input data. 

The other one is called batch normalization [21] which is normally applied in the hidden layer and 

also is the one always before the activation function [22]. 

Batch normalization is defined as 

𝑋 =
𝑋 − 𝜇

√𝜎2 + 𝜖
(2) 

𝑋̃ = 𝛾𝑋 + 𝛽 (3) 

where 𝑋 is the original data, 𝜇 is the mean value of 𝑋, 𝜎2 is the variance of 𝑋,  𝑋 is the temporary 

result of the normalization, and 𝑋̃ is the final result of the batch normalization. Furthermore, 𝜖 

avoids the zero denominators, 𝛾 and 𝛽 are used to tune the distribution of the original data. 

Linear Computation is a process to combined normalized data and weights. There are also two 

ways to do linear computation either. One is called hypothesis function, the other one is called 

convolutional function. 

Hypothesis function is defined as 

𝑍 = 𝑊𝑋 + 𝐵 (4) 

Convolutional function is defined as: 

𝑍 = 𝑊 ∗ 𝑋 + 𝐵 (5) 

where 𝑊 is the weight, 𝑋 is input data, 𝐵 is the bias and 𝑍 is the result of the linear computation.  

The difference between these two linear computations is the method of applying the weight.  
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For the hypothesis function, it directly uses the weight to do the matrix multiplication with the 

input data. Whereas, in convolutional function, the weight is looked at as the kernel, which is used 

to scan the data from the up to down and left to right. When the kernel scans the data, it will be 

used to do the element multiplication with the scanned area firstly. Then for all elements’ results, 

do the addition to get the final result of the convolutional function of this scanned area. There is 

an illustration of the convolutional function in Figure 3. 

 

Figure 3. The illustration of the convolutional production 

Activation Function is a process to transformed linear form data into the non-linear form. In the 

deep learning aspect, activation functions [22] are significant for the performance of the neural 

networks. The reason is that it can transform the data form. In Figure 1, it is obvious that a neural 

network contains plenty of the computation units. If all the computation units only contain the 

linear computation, then all the computation units just equivalent to one computation unit. Because 

all the data are the linear form. The illustration is demonstrated in Figure 4. 

 

Figure 4. The reason why activation function is necessary where 𝑊 = 𝑊1𝑊2 and 𝐵 = 𝐵1 + 𝐵2 
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Therefore, if there is no activation function in the computation units, the topologies of the neural 

networks are meaningless. 

There are three most used activation functions [22] which are sigmoid function, tanh function and 

ReLu function. 

The sigmoid function is defined as 

𝑔(𝑧) =
1

1 + 𝑒−𝑧
(6) 

The tanh function is defined as 

𝑔(𝑧) =
(𝑒𝑧 − 𝑒−𝑧)

(𝑒𝑧 + 𝑒−𝑧)
(7) 

The ReLu function is defined as 

𝑔(𝑧) = 𝑚𝑎𝑥(0, 𝑧) (8) 

where 𝑧 in all these three functions represents the result of the linear computation.  

Figure 5 shows the graphs of these three functions. 

 

Figure 5. The image of the Sigmoid Function, Tanh Function, and 𝑅𝑒𝐿𝑢 Function 

There is a special activation function that only applies to the output layer’s computation units when 

there are more than one computation unit in the output layer. It is called 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation 

function. 

The 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 function is defined as 

𝑔(𝑧) =
𝑒𝑗

𝑧

∑ 𝑒𝑖
𝑧𝑘

𝑖=1

(9) 

where 𝑧 is the result of the linear computation, 𝑘 is the number of the computation nodes in the 

output layer, 𝑒𝑗
𝑧 and 𝑒𝑖

𝑧 are the exponential result of the 𝑗𝑡ℎ and 𝑖𝑡ℎ computation unit.  



10 

 

There are also some other computations in forward propagation but not in the computation units. 

The first one is the loss function. The Loss function is used to estimate the error between the input 

training label and the result of the output layer. The most used loss function is named Cross-

Entropy loss [24]. There are two different Cross-Entropy losses, one is suitable for the binary 

classification problem and another one is suitable for the multi-class classification problem. 

Binary Cross-Entropy Loss is defined as 

𝐿𝑜𝑠𝑠 =  −𝑦𝑙𝑜𝑔(𝑎) − (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑎) (10) 

where 𝑦 is the input training label and 𝑎 is the result of the output layer. 

Multiple Cross-Entropy Loss is defined as 

𝐿𝑜𝑠𝑠 =  − ∑ 𝑦𝑖𝑙𝑜𝑔(𝑎𝑖)

𝑘

𝑖=1

(11) 

where 𝑘 is the number of the different classes, 𝑎𝑖 is the result of the 𝑖𝑡ℎ class in the output layer 

and 𝑦𝑖 is the 𝑖𝑡ℎ value of the input training label. 

For each training element in input training data, it will have a loss. The final error of the whole 

neural network is the addition of all the losses. The addition result is called the Cost function. 

The Cost function is a function of the weight (W) and bias (b), it is used to estimate the total error 

of the neural network. 

Binary Cross-Entropy Cost is defined as 

𝐶𝑜𝑠𝑡(𝑊, 𝑏) = −
1

𝑚
∑ 𝑦(𝑖)𝑙𝑜𝑔(𝑎(𝑖)) + (1 − 𝑦(𝑖))𝑙𝑜𝑔(1 − 𝑎(𝑖))

𝑚

𝑖=1

(12) 

where 𝑚 is the total number of the input training data, 𝑦(𝑖) is the 𝑖𝑡ℎ input training label and 𝑎(𝑖) 

is the result of the output layer for the 𝑖𝑡ℎ input training data. 

Multiple Cross-Entropy Cost is defined as 

𝐶𝑜𝑠𝑡(𝑊, 𝑏) = −
1

𝑚
∑ ∑ 𝑦𝑗

(𝑖)
(𝑎𝑗

(𝑖)
)

𝑘

𝑗=1

𝑚

𝑖=1

(13) 

where 𝑚 is the total number of the input training data, 𝑘 is the total number of the classes, 𝑦𝑗
(𝑖)

 is 

the 𝑗𝑡ℎ  input training label for the 𝑖𝑡ℎ  input training data and 𝑎𝑗
(𝑖)

 is the result of the 𝑗𝑡ℎ 

computation units for the 𝑖𝑡ℎ input training data. 
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The next one is the regularization. It is used to reduce the overfitting problem [23]. The overfitting 

is a modeling error that happens when the model is too closely fit the input training data. On the 

contrary, the underfitting is a modeling error that happens when the model is not fitting the input 

training data. Sometimes, they are called high variance and high bias. Figure 6 shows the graphs 

of these two abnormal situations. 

 

Figure 6. The overfitting (high variance) and underfitting (high bias) where the green points are 

the input training data and the dotted line is the fitting line 

There are two most used methods to do the regularization which are L-2 Regularization and 

Dropout Regularization. 

L-2 Regularization is defined as 

𝜆

2𝑚
||𝑊||2

2 (14) 

where 𝜆 is the regularization coefficient, 𝑚 is the total number of the input training data and 

||𝑊||2
2 is the L-2 norm of the weights. 

Normally, the L-2 Regularization is added into the Cost function, when the 𝜆  increases, the 

overfitting problem is reduced. However, if 𝜆 is too large, then the model tends to the underfitting. 

Dropout Regularization is the process of randomly dropped out some computation units in some 

layers. It has a dropout probability 𝑝 (0 < 𝑝 < 1). And for each computation unit, they will get a 

random probability 𝑟 (0 < 𝑟 < 1). If 𝑟 is larger than 𝑝, then this computation unit will be dropped 

out. When 𝑝 decreases, the overfitting problem is reduced. However, if 𝑝 is too small, then the 

model tends to the underfitting. 

In terms of the reason why these two regularization methods can reduce overfitting, for L-2 

regularization, it gives the weights a penalty that shrinks the searching area of the weights to make 
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the process of finding the best weights becomes easy. For the dropout regularization, it directly 

makes the topology of the neural network becomes simple. 

The next significant part of the computations of the neural network is backward propagation. It 

consists of the derivatives computation and the gradient descent [13]. Derivatives computation is 

a process to computed the derivatives of the weights (W) and bias (b) via the cost function. 

Gradient descent is a process to optimize the weights (W) and bias (b) by using the derivatives of 

them. 

The normal gradient descent is defined as 

𝑥 ≔ 𝑥 − 𝛼
𝜕𝑓

𝜕𝑥
(15) 

where 𝑥 can be weights or bias, 
𝜕𝑓

𝜕𝑥
 is the derivatives of 𝑥 of cost function 𝑓 and 𝛼 is the learning 

rate to control the speed of the gradient descent. 

Whereas, the normal gradient descent method is not efficient to optimize the weights and bias in 

deep learning. Therefore, some AI researchers come up with another two more efficient gradient 

descent methods, which are momentum gradient descent [15] and Adam gradient descent [14]. 

The momentum gradient descent is defined as 

𝑣𝑥
𝑖 = 𝛽𝑣𝑥

𝑖−1 + (1 − 𝛽)
𝜕𝑓

𝜕𝑥
(16) 

𝑥 ≔ 𝑥 − 𝛼𝑣𝑥 (17) 

where 𝑥 can be weights or bias, 
𝜕𝑓

𝜕𝑥
 is the derivative of 𝑥 in cost function 𝑓, 𝛽 is a coefficient to 

transform the derivative of 𝑥 to be the gradient 𝑣𝑥
𝑖 , 𝑣𝑥

𝑖  is the gradient of the 𝑥, 𝛼 is learning rate 

and 𝑖 is the number of times of the gradient descent. 

The Adam gradient descent is defined as 

𝑣𝑥
𝑖 = 𝛽1𝑣𝑥

𝑖−1 + (1 − 𝛽1)
𝜕𝑓

𝜕𝑥
(18) 

𝑠𝑥
𝑖 = 𝛽2𝑠𝑥

𝑖−1 + (1 − 𝛽2)
𝜕𝑓

𝜕2𝑥
(19) 

(𝑣𝑥
𝑖 )

𝑐𝑜𝑟𝑟𝑒𝑐𝑡
=

𝑣𝑥
𝑖

1 − 𝛽1
𝑖

(20) 

(𝑠𝑥
𝑖 )

𝑐𝑜𝑟𝑟𝑒𝑐𝑡
=

𝑠𝑥
𝑖

1 − 𝛽2
𝑡 (21) 
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𝑥 ≔ 𝑥 − 𝛼
(𝑣𝑥

𝑖 )
𝑐𝑜𝑟𝑟𝑒𝑐𝑡

√(𝑠𝑥
𝑖 )

𝑐𝑜𝑟𝑟𝑒𝑐𝑡
+ 𝜖

(22)
 

where 𝑥 can be weights or bias, 
𝜕𝑓

𝜕𝑥
 is the derivative of 𝑥 in cost function 𝑓, 𝛽1 is a coefficient to 

transform the derivative of 𝑥 to be the gradient 𝑣𝑥
𝑖 , 𝑣𝑥

𝑖  is the gradient of the 𝑥, 𝛽2 is a coefficient to 

transform the derivative of 𝑥 to be the gradient 𝑠𝑥
𝑖 , 𝑠𝑥

𝑖  is another gradient of the 𝑥, (𝑣𝑥
𝑖 )

𝑐𝑜𝑟𝑟𝑒𝑐𝑡
 and 

(𝑠𝑥
𝑖 )

𝑐𝑜𝑟𝑟𝑒𝑐𝑡
 are the gradients after bias correction, 𝛼 is learning rate, 𝑖 is the number of times of the 

gradient descent and 𝜖 avoids the zero denominators. 

In deep learning, there are also two different neural networks, except the neural networks like 

Figure 1. One is called Convolutional Neural Network (CNN) whose linear computation is the 

convolutional function. CNN is efficient for image processing. Therefore, it is normally used in 

image classification or object detection problems. Another one is called Recurrent Neural Network 

(RNN) [10]. RNN is used to process the sequence data like the natural language and the audio. Its 

computation units will receive two inputs, which are not the same as Figure 2. One is the current 

input training element (A word if the training data is a sentence), another one is the previous 

training elements computation result. For each input element, the RNN unit would use the same 

weights and bias to do the computation. Normally, the RNN contains only one computation unit 

and one layer. The basic computation units and topology of RNN are demonstrated in Figure 7. 

 

Figure 7. The computation unit and topology of RNN where 𝑎𝑡−1 is the result of the previous 

training element, 𝑥𝑡 is the current training element, 𝑎𝑡 and ℎ𝑡 are the current results and ℎ𝑡 is used 

to compute the cost function 
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1.2.Artificial NN vs Human NN vs Complex-Graph-Based NN 

Compared with the actual brains’ neural networks, the topology of manually designed neural 

networks (like Figure 1) is extremely simple. Meanwhile, in our human beings’ neural network, a 

neuron, which is simulated by a computation unit in the artificial neural network, can be activated 

randomly to transmit the data rather than determinately. To offer an artificial neural network non-

trivial topologies and randomness, some AI researchers tried to apply the random complex graphs 

to generate the neural network. 

In terms of Figure 1, it is obvious that the topology of a neural network is a Directed Acyclic Graph 

(DAG). Therefore, the scientists try to convert the random complex graphs into the DAGs and use 

them to generate the neural networks. In this case, we can further analyze the attributes of the 

complex graphs and study the relationship between the topology and the performance of neural 

networks. The attributes include the clustering coefficient, average path length, degree distribution, 

and so on. The clustering coefficient is used to estimate that for each vertex inside the complex 

graph, is it tending to cluster together. The average path length is used to estimate that the 

average number of steps along the shortest paths. The degree distribution is a probability 

distribution used to describe the connection circumstance of each vertex. 

Clustering coefficient is defined as 

𝐶𝑖 =
3 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑖

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠
(23) 

where 𝑐𝑖 is the clustering coefficient of vertex 𝑖. 

The Average path length is defined as 

𝑙 =
1

𝑛(𝑛 − 1)
∑ 𝑑(𝑣𝑖, 𝑣𝑗)

𝑖≠𝑗
(24) 

where 𝑙 is the average path length, 𝑛 is the total number of the vertices and 𝑑(𝑣𝑖 , 𝑣𝑗) is the shortest 

path length between 𝑣𝑖 and 𝑣𝑗 . If 𝑣𝑖 cannot reach 𝑣𝑗 , then 𝑑(𝑣𝑖 , 𝑣𝑗) = 0. 

The Degree distribution is defined as 

𝑝(𝑘) =
𝑛𝑘

𝑛
(25) 

where 𝑘 is the number of the degree, 𝑛𝑘 is the number of the vertices whose degrees are 𝑘 and 𝑛 

is the total number of the vertices in the graph.  
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In terms of the current study, the Facebook AI Research (FAIR) team [9] used 3 classic random 

graphs (Erdős-Rényi graph (ER) [3], Barabási-Albert graph (BA) [1] and Watts-Strogatz graph 

(WS) [11]) to generate the neural networks and trained neural networks with 1000-classes 

ImageNet dataset. Compared with some human-designed neural networks (ResNet [6], VGG [7], 

Alex-Net [2], etc.), they found that the complex-graph-based neural networks are not worse than 

the artificial neural network, they claimed usually better. The results of the FAIR team are 

demonstrated in Figure 8. 

 

Figure 8. The result of WS complex-graph-based neural network in FAIR’s works [9] comparing 

with other artificial neural networks in 1000-classes image classification problem 

In summary, for our project, we study the relationship between the topology and the performance 

of the neural network based on the works of Facebook AI Research (FAIR). We apply the three 

random complex graphs (Erdős-Rényi graph (ER) [3], Barabási-Albert graph (BA) [1], and Watts-

Strogatz graph (WS) [11]) either and do the following works. 

(1) Generates random complex graphs. 

(2) Converts the random graphs into DAGs 

(3) Defines the computation pipeline of each vertex in DAGs and also the data-flow patterns 

(4) Forms the neural network. 

(5) Repeats the FAIR’s experiments to find the best neural network. 

(6) Uses the best neural network to study the relationship between the degree distribution and 

the performance of the neural network. 
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2.Related Work 

Due to our project based on the 3 classic random graphs algorithms and FAIR’s works [9], we 

firstly introduce some basic ideas of them in this section. 

2.1.Random Graphs 

2.1.1.Erdős-Rényi Graph (ER) 

Paul Erdős and Alfréd Rényi proposed the first random graph model in 1960 [3] which is called 

Erdős- Rényi random graph (ER graph). 

The ER graph is defined as 𝐺(𝑛, 𝑝), where 𝑛 is the total number of vertices in the ER graph and 𝑝 

is the wire-able probability between two different vertices. The outline of generating the ER graph 

is described in Figure 9 and the details of the algorithm are clarified in section 3. 

 

Figure 9. The outline of generating the ER graph 

Thus, the number of the edges (𝑒) in an ER graph is 0 ≤ 𝑒 ≤ 𝐶𝑛
2. 

The degree distribution of the ER graph is defined as 

𝑝(𝑘) = 𝐶𝑛−1
𝑘 𝑝𝑘(1 − 𝑝)𝑛−1−𝑘 (26) 

where 𝐶𝑛−1
𝑘  is the number of possible combinations for the vertex which connected with 𝑘 other 

vertices, 𝑝𝑘  is the probability that 𝐶𝑛−1
𝑘  occurs, and (1 − 𝑝)𝑛−1−𝑘  is the probability that 𝐶𝑛−1

𝑘  

doesn’t occur. 
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Meanwhile, the degree distribution of the ER graph is close to the Poisson distribution (𝑝(𝑘) =

(𝑛𝑝)𝑘

𝑘!
𝑒−𝑛𝑝) when 𝑛 → ∞ and 𝑛𝑝 is constant. 

2.1.2.Barabási-Albert Graph (BA) 

The Barabási-Albert model [1] generates random graphs that are scale-free. The scale-free means 

that the degree distribution of the graph follows the power-law distribution. Also, the graph is sel-

similar. For example, in the BA graph, no matter how many vertices it has, most of the vertices 

would always tend to connect with the vertices whose degree is large. 

The BA graph is defined as 𝐺(𝑛, 𝑒), where 𝑛 is the total number of the vertices in the BA graph 

and 𝑒 is the total number of the wire-able edges for each new vertex (𝑒 ≪ 𝑛). The outline of 

generating the BA graph is described in Figure 10 and the details of the algorithm are clarified in 

section 3. 

 

Figure 10. The outline of generating the BA graph where 𝑑(𝑉) is the current total number of the 

vertices in the BA graph 

Wire-able probability of vertex 𝑖 in BA graph is defined as 

𝑝𝑖 =
𝑘𝑖

𝛴𝑘𝑗

(27) 

where 𝑘𝑖 is the degree of vertex 𝑖, and Σ𝑘𝑗 is the total degree for all existing vertices. 

The degree distribution of the BA graph is defined as 
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𝑝(𝑘) ~ 𝑘−3 (28) 

2.1.3.Watts-Strogatz Graph (WS) 

The Watts-Strogatz model (WS) [11] generates random graphs with the ‘Small-World’ attributes, 

which means most vertices are not neighbors of one another, but the neighbors of any given 

vertices are likely to be neighbors of each other and most vertices can be reached from every other 

vertex by a small number of steps. 

The WS graph is defined as 𝐺(𝑘, 𝑛), where 𝑘 is the number of the nearest neighbors with which 

each vertex would connect at the beginning, and 𝑛 is the total number of the vertices for the WS 

graph (𝑘 ≪ 𝑛). The outline of generating the WS graph is described in Figure 11 and the details 

of the algorithm are clarified in section 3. 

 

Figure 11. The outline of generating the WS model 

For the WS graph when the wire-able probability 𝑝 equal 0, actually the degree distribution 𝑝(𝑘) 

is the Delta Function as 𝑘. 

Meanwhile, when the wire-able probability 𝑝 larger than 0, the degree distribution of the WS graph 

will have two situations which are 𝑝(𝑐𝑖
1) and 𝑝(𝑐𝑖

2). 

The 𝑝(𝑐𝑖
1) is defined as 

𝑝(𝑐𝑖
1) = 𝑐𝑘

2

𝑛(1 − 𝑝)𝑛𝑝
𝑘
2

−𝑛 (29) 

where 𝑐𝑖
1 represents the number of non-rewired edges of vertex 𝑖. 

The 𝑝(𝑐𝑖
2) is defined as 
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𝑝(𝑐𝑖
2) = 𝑐

𝑝𝑁
𝑘
2

𝑑−𝑛−
𝑘
2𝑝𝑑−𝑛−

𝑘
2(1 − 𝑝)𝑝𝑁

𝑘
2

−(𝑑−𝑛−
𝑘
2

) (30) 

where 𝑐𝑖
2 actually represents that how many new neighbors that vertex 𝑖 will obtain after rewiring 

and 𝑁 is the total number of the vertices of the WS graph. 

The degree distribution of the WS graph is defined as 

𝑝(𝑑) =  ∑ 𝑝(𝑐𝑖
1)𝑝(𝑐𝑖

2) = ∑ 𝑐𝑘
2

𝑛(1 − 𝑝)𝑛𝑝
𝑘
2

−𝑛
(

𝑝𝑘
2 )

𝑑−𝑛−
𝑘
2

(𝑑 − 𝑛 −
𝑘
2) !

𝑒−
𝑝𝑘
2

𝑓(𝑑,𝑘)

𝑛=0

𝑓(𝑑,𝑘)

𝑛=0

(31) 

where 𝑓(𝑑, 𝑘) = min (𝑑 −
𝑘

2
,

𝑘

2
) and 𝑑 ≥

𝑘

2
. 

2.2.Randomly Wired Neural Network (RWNN) 

2.2.1.Training Pipeline 

Regarding the trained pipeline of the RWNN in the Facebook AI Research team [9], they applied 

three classic random graphs (ER [3], BA [1], WS [11]) to be the computation graphs of the neural 

networks. Afterward, an index was assigned to each vertex in the random graphs. For the ER model, 

the assignment is random; for the BA model, the vertex which is added into the model earlier will 

get a smaller index; and for the WS model, the index is assigned counter-clockwise. Then they 

formed DAGs by directly using the small index vertex point to the large index vertex. Next, stacked 

DAGs together to form the neural networks, and each DAG is a DAG layer. Finally, they used 

ReLu-Conv-BN pipeline in each computation unit in the DAGs, where Conv is the convolutional 

function and BN is the batch normalization.  

2.2.2.RWNN Model 

The Facebook AI Research team generated two Randomly Wired Neural Network Models. One is 

the small regime model with only three DAG layers, the other one is the regular regime model 

with four DAG layers. For each DAG layer, it contains 32 vertices, except the first DAG layer in 

the regular regime model which only has a half. Each DAG layer will twice the number of the 

channels of the input image and shrink the image size to half. The models’ descriptions show in 

Table 1. 

Stage Small Regime Regular Regime 

Conv1 3 × 3 𝑐𝑜𝑛𝑣, 𝐶/2 

Conv2 3 × 3 𝑐𝑜𝑛𝑣, 𝐶 
𝐷𝐴𝐺 𝐿𝑎𝑦𝑒𝑟 

𝑁 = 16, 𝐶 
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Conv3 
𝐷𝐴𝐺 𝐿𝑎𝑦𝑒𝑟 

𝑁 = 32, 𝐶 

𝐷𝐴𝐺 𝐿𝑎𝑦𝑒𝑟 

𝑁 = 32, 2𝐶 

Conv4 
𝐷𝐴𝐺 𝐿𝑎𝑦𝑒𝑟 

𝑁 = 32, 2𝐶 

𝐷𝐴𝐺 𝐿𝑎𝑦𝑒𝑟 

𝑁 = 32, 4𝐶 

Conv5 
𝐷𝐴𝐺 𝐿𝑎𝑦𝑒𝑟 

𝑁 = 32, 4𝐶 

𝐷𝐴𝐺 𝐿𝑎𝑦𝑒𝑟 

𝑁 = 32, 8𝐶 

Classifier 
1 × 1 𝑐𝑜𝑛𝑣, 1280 − 𝑑 

𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑜𝑙, 1000 − 𝑑 𝑓𝑐, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 

Table 1. The architecture of the RWNN Model where N is the total number of the vertices of the 

DAG layer and initial value of C is 78 for small regime model and 154 or 109 for regular regime 

model 

2.2.3.Training Result 

The Facebook AI Research team has trained the small regime and regular regime model with the 

ImageNet dataset on different random graphs. The ER model with wire-able probability equal 0.2 

gets the best performance, whose top-1 accuracy is 73.4%; the BA model with the number of wire-

able edges equal 5 gets the best performance, whose top-1 accuracy is 73.2%; the WS model with 

the number of nearest neighbor equal 4 and wire-able probability equal 0.75 gets the best 

performance, whose top-1 accuracy is 73.8%. The total results of each RWNN model are 

demonstrated in Figure 12. 

 

Figure 12. The top-1 accuracy of all RWNN models in FAIR’s works [9] 

Afterward, the Facebook AI research team also compared the best RWNN model which is the 

WS(4, 0.75) with some human-designed neural networks such as ResNet [6], ShuffleNet [4], and 

so on. They found that the performance of the RWNN model is similar to the well-performed 

human-designed neural networks, they claimed usually better. The results are demonstrated in 

Figure 8. 
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3.Methodology 

We now introduce the methodologies which are applied in our project. We follow the methods 

proposed by the FAIR team, rebuild the training pipeline, and do more experiments on more 

random graphs. 

3.1.Random Graph Generator 

In terms of the random graph generator, we apply the algorithms of the three classic random graphs 

which are the ER graph [3], the BA graph [1], and the WS graph [11]. Afterward, we save the 

random graphs as edge information and adjacent matrices (There are some illustrations of the 

generated graphs in the appendix). The edge information is a list that contains all the edge 

descriptions like (𝑖, 𝑗), where 𝑖 and 𝑗 are a pair of vertices. The adjacent matrix is a matrix that 

describes the connection situation of the graph, where the number of the columns and rows 

represent each vertex in a graph. If there is an edge between (𝑖, 𝑗), then the elements (𝑖, 𝑗) and (𝑗, 𝑖) 

will be 1, otherwise would be 0. 

ER Graph. We generate an empty graph with 𝑛 vertices and generate a wire-able probability 𝑝 at 

first. For each pair of vertices, we generate a random number 𝑟. If 𝑟 < 𝑝, then we add an edge 

between them. Through the whole generating processes, we avoid the self-loop and repetitive 

edges. Algorithm 1 shows the pseudo-code for the ER graph generator. 

ER(𝒑) Generator Pseudo-Code 

1 Initialize an empty graph with 𝑛 vertices and no edges. 

2 Generate the wire-able probability 𝑝. 

3 For each pair of the vertices (𝑖, 𝑗): 

4         Generate the random number 𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) 

5         If 𝑟 < 𝑝 and 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥(𝑖, 𝑗) = 0 and 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥(𝑗, 𝑖) = 0: 

6                 Add an edge between (𝑖, 𝑗) 

7                 Set 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥(𝑖, 𝑗) = 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥(𝑗, 𝑖) = 1 

Algorithm 1 The pseudo-code of the ER model 

BA Graph. We generate a completed graph with 𝑒 vertices (𝑒 ≪ 𝑛) at first, where 𝑛 is the total 

number of vertices. Meanwhile, compute the wire-able probability 𝑝𝑖 for all the existed vertices 𝑖, 

according to the current degree distribution. Afterward, add the new vertex with a random number 

𝑟. If 𝑟 < 𝑝, then add the edge between the new vertex and vertex 𝑖 till there are 𝑒 edges connected 

to the new vertex or already traverse all the existed vertices. Algorithm 2 shows the pseudo-code 

for the BA graph generator. 

 



22 

 

BA(𝒆) Generator Pseudo-Code 

1 Initialize a completed graph with 𝑛 vertices. 

2 Compute all the 𝑝𝑖 with current degree distribution. 

3 For remaining 𝑛 − 𝑒 vertices: 

4         Add new vertex 𝑗 into the graph. 

5         Generate the random number 𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1). 

6         For all existed vertices 𝑖: 
7                 If 𝑟 < 𝑝𝑖 and the number of the edges for vertex 𝑗 is smaller than 𝑒: 

8                         Add an edge between 𝑖 and 𝑗 

9                         Set 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥(𝑖, 𝑗) = 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥(𝑗, 𝑖) = 1 

10         Refresh all the wire-able probability 𝑝𝑖 and compute 𝑝𝑗. 

Algorithm 2 The pseudo-code of the BA model 

WS Diagram. We generate a regular graph with each vertex connecting with its 𝑘  nearest 

neighbors at first. Meanwhile, generate a wire-able probability 𝑝 . Then generate the random 

number 𝑟 for each edge. Afterward, rewire the edge with other vertices by following the clockwise 

when 𝑟 < 𝑝. Algorithm 3 shows the pseudo-code for the WS graph generator. 

WS(𝒌, 𝒑) Generator Pseudo-Code 

1 Initialize a regular graph with each vertex connecting to its 𝑘 nearest neighbors. 

2 Generate the wire-able probability 𝑝. 

3 For each edge (𝑖, 𝑗): 

4         Generate the random number 𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1). 

5         If 𝑟 < 𝑝: 

6                 Delete the edge (𝑖, 𝑗). 

7                 Set 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥(𝑖, 𝑗) = 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥(𝑗, 𝑖) = 0. 

8                 Randomly pick up a vertex 𝑙 inside the WS model except 𝑖 and 𝑗. 

9                 While 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥(𝑖, 𝑙) = 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥(𝑙, 𝑖) = 1: 

10                         Randomly pick up a vertex 𝑙 again. 

11                 Add an edge between (𝑖, 𝑙). 

12                 Set 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥(𝑖, 𝑙) = 𝑎𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥(𝑙, 𝑗) = 1 

Algorithm 3 The pseudo-code of the WS model 

3.2.Neural Network Generator 

 

Figure 13. The architecture of the neural network for image recognition 
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In Figure 13, the first cube is the input image, the Agg means the aggregation function, the input 

image firstly is feed into two individual convolutional functions, FC is the full-connected layer 

and before the FC layer there is another individual convolutional function to change the data size 

matching the size of the FC layer 

For the computation pipeline of each vertex in the DAG layer, we apply three computations which 

are demonstrated in Figure 14. 

 

Figure 14. The computation pipeline of the vertex in DAG 

The computation pipeline consists of three parts which are one ReLu activation function, one 

bottleneck-conv, and one batch normalization. The bottleneck-conv is a combination of two 

convolutional functions which are called depth-wise convolution and point-wise convolution. It is 

used to shrink the space cost of the convolutional function. The depth-wise convolution is only 

used to change the size of the image. The point-wise convolution is only used to change the 

channels of the image. 

Regarding the topology of the whole neural network, we stack three DAG layers with the same 

number of vertices and same graph types (ER, BA, WS, or some other graphs) together. The 

topology of the neural network is illustrated in Figure 13. There are a total of six convolutional 

layers, three individually and three DAGs. Between two DAG layers, there is an aggregation 

function to aggregate all the output data from the vertices which only have indegree in DAGs, and 

each DAG layer shrinks the size of the input image to a half and enlarges the number of channels 

of the input image twice. The model description is demonstrated in Table 2. 
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Stage Pipeline Output Size 
Output Channels 

Amount 

𝐶𝑜𝑛𝑣 − 𝐵𝑁 − 𝑅𝑒𝐿𝑢 
𝑘𝑒𝑟𝑛𝑒𝑙 → 3 × 3 

𝑠𝑡𝑟𝑖𝑑𝑒 → 2 

𝑝𝑎𝑑𝑑𝑖𝑛𝑔 → 1 

𝐼/2 𝐶/2 

𝐶𝑜𝑛𝑣 − 𝐵𝑁 
𝑘𝑒𝑟𝑛𝑒𝑙 → 3 × 3 

𝑠𝑡𝑟𝑖𝑑𝑒 → 2 

𝑝𝑎𝑑𝑑𝑖𝑛𝑔 → 1 

𝐼/4 𝐶 

𝐷𝐴𝐺 # 𝑜𝑓 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 → 𝑁 𝐼/8 𝐶 

𝐷𝐴𝐺 # 𝑜𝑓 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 → 𝑁 𝐼/16 2𝐶 

𝐷𝐴𝐺 # 𝑜𝑓 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 → 𝑁 𝐼/32 4𝐶 

𝑅𝑒𝐿𝑢 − 𝐶𝑜𝑛𝑣 − 𝐵𝑁 
𝑘𝑒𝑟𝑛𝑒𝑙 → 1 × 1 

𝑠𝑡𝑟𝑖𝑑𝑒 → 1 
𝐼/32 1280 

𝐹𝐶 
𝑎𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔 → (1,1) 

𝐹𝐶 → (1280, # 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠) 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 

# 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 1 

Table 2. The architecture of the neural network 

In Table 2, 𝐶 is the size of the original channel and 𝐼 is the size of the original image. For DAG 

layers, all the vertices are applied bottleneck convolution, which consists of one depth-wise 

convolution with 3 × 3 kernel and one point-wise convolution with 1 × 1 kernel. Only the input 

vertices are used to change the original image (Blue vertices in Figure 13), whose stride for depth-

wise conv is 2 and 1 for point-wise. 

In terms of the data-flow pattern, for each DAG, we apply a queue to control it. When the input 

data coming, the input vertices which only have outdegree (Blue vertices in Figure 13) will be put 

into the queue firstly. Meanwhile, we generate a list whose indices match the indices of the vertices 

in the DAG, which is used to store the input data for all the vertices. Once the vertex has been put 

into the queue, it will use the corresponding data in the list to do the computation. As long as the 

vertex finishes the computation, it will be popped out from the queue and the result of it will be 

saved into the corresponding position of the list, according to the edge data of the DAG. Afterward, 

if the number of the data of some indices in the list is equal to the amount of the indegree of the 

corresponding vertices, these vertices will be put into the queue. Then, repeat the above processes 

till the queue becomes empty again. Eventually, the output of the DAG layer will be sent to the 

aggregation function. In the aggregation function, there is an aggregation weight which is used to 

aggregate the data in the channel-wise. The aggregation weight will be activated by the tanh 
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function at first. Then multiply with the coming data. Meanwhile, it will also be optimized like the 

kernel of the convolutional function. 

3.3.Datasets 

In terms of the FAIR team’s work, they applied a 1000-classes ImageNet dataset and trained with 

100 epochs, 8192 batch size, and 256 RTX 2080ti 24GB GPUs. However, our computation 

resources are not suitable for this huge training. We have tried to train a 1000-classes ImageNet 

dataset with only 32 batch size and 100 epochs. Whereas, it almost consumed us a week to do the 

training for just one model. Therefore, we have to use another small dataset to continue our 

experiments, which is named Canadian Institute For Advanced Research 10 (CIFAR10). 

CIFAR10 dataset contains 60000 32 × 32 color images in 10 different classes, which are airplanes, 

cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. There are 6000 images for each class. 

Comparing with the ImageNet dataset which contains 1 million 224 × 224 color images of 1000 

classes, CIFAR10 is a smaller and more suitable dataset for us to continue our experiments. 

4.Experiments and Results 

Due to the limitation of the computation resources, we select the small dataset named CIFAR10 

with a 10-classes classification task to train our models. Meanwhile, for each random graph, we 

use 2 different random seeds to generate the graphs and use top-1 accuracy to estimate the 

performance of the neural networks. Besides, we apply the stochastic gradient descent, label 

smoothing regularization [18], cosine warm restart learning rate decay [19] to train with 32 batch 

size, 100 epochs, 0.01 learning rate, and only one RTX 2080ti 24GB GPU. The stochastic gradient 

descent is the 1-batch size mini-batch Adam gradient descent (Formula 18). The label smoothing 

regularization is a process to smooth input training label, to reduce the overfitting problem of the 

model (Figure 6). The cosine warm restart learning rate decay is a process to decay the learning 

rate during the training, according to the cosine function. ‘Restart’ means when the learning rate 

equals 0, it will be set back to the original value and decay again. 

4.1.FAIR Experiments Repetition 

In terms of the first stage experiment, we try to use our neural network generator to repeat the 

experiments of the Facebook AI Research team. To check the performance of our neural network 

generator with different types of random graphs. 
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ER Neural Network Generator. For the ER model, we train it with 32 vertices. Meanwhile, we 

pick up 4 different wire-able probabilities from 0.2 to 0.8 with an interval equal to 0.2. The result 

is demonstrated in Figure 15. 

 

Figure 15. The performance of the ER model 

Via the result of the experiments of the ER model, we get the best-performed ER model whose 

wire-able probability is 0.2 and top-1 accuracy is equal to 73.2%. Compared with the experiments 

of the FAIR team, our result is only 0.2% lower than their ER(0.2) model. 

BA Neural Network Generator. For the BA model, we train it with 32 vertices either. Meanwhile, 

we pick up 5 different wire-able edges from 1 to 7. The result is demonstrated in Figure 16. 

 

Figure 16. The performance of the BA model 
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Through the result of the experiments of the BA model, we get the best-performed BA model 

whose wire-able edge is 7 and top-1 accuracy is equal to 73.2% either. Compared with the works 

of the FAIR team, our result is 0.1% higher than their BA(7) model and equal to their best BA 

model which is BA(5). 

WS Neural Network Generator. For the WS model, we trained it with 32 vertices. Due to the 

WS model has two parameters, therefore, we pick up 5 different values for wire-able probabilities 

and 4 different values for nearest neighbors. Afterward, we train 20 models. The result is 

demonstrated in Figure 17. 

 

Figure 17. The performance of the WS model 

Eventually, we find that the best WS model is WS(4, 0.75) whose top-1 accuracy is 73.2%. 

Compared with the result of the FAIR, their best model of the WS graph is slightly higher than 

ours, which is 73.8%. 

Therefore, compared to our models with the FAIR’s experiments, our models have a similar 

performance with them, which means that our models can be applied for the follow-up experiments. 

4.2.Stage-Two Experiments with ER Model 

Although we get similar results with the FAIR’s paper [9], our results show that all the best models 

in different types of the random graphs have similar performance. Therefore, according to our 

target which is that we want to find how the degree distribution affects the performance of the 
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neural network. We select the ER(0.2) model to do the follow-up experiments because the degree 

distribution of the ER graph will be similar to the Poisson distribution when 𝑛 → ∞ and 𝑛𝑝 is 

constant. Thus, we come up with the sub-target which is that whether the degree distribution of 

the topology of the neural network is more similar to the Poisson distribution, the performance is 

better. 

In the beginning, we train the models with the number of vertices in the DAG layer between 4 and 

256. And sample the number of vertices as the two of the power of two. The result is demonstrated 

in Figure 18. 

 

 

Figure 18. The performance of ER(0.2) model when the number of the vertices is the two of the 

power of two from 4 to 256, the ‘*’ in 256 vertices means that this model has not finished training, 

due to the limitation of the computation resources 

Through the training result in Figure 18, we still find that the ER(0.2) model with 32 vertices has 

the best performance. Afterward, we compare the degree distribution of the ER(0.2) model with 

32 vertices with the Poisson distribution. The result is demonstrated in Figure 19. 
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Figure 19. The comparing of the degree distribution of ER(0.2) model with 32 vertices and 

Poisson distribution where the blue points are the degree distribution of ER(0.2) model with 32 

and the red line is the Poisson distribution 

In Figure 19, it is obvious that 32 is not enough vertices to make the degree distribution of the 

ER(0.2) model similar to the Poisson distribution. Therefore, we shrink the sampling interval of 

the number of vertices. For the follow-up experiments, we sample all the possible numbers of the 

vertices between 4 and 74 and redo the training. The result is demonstrated in Figure 20. 

 

Figure 20. The performance of sampling all the possible number of the vertices from 4 to 74 for 

the ER(0.2) model 
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Through the result in Figure 20, we find that when the number of the vertices larger than 32, some 

models that obtained better performance than the number of the vertices equal 32.  For example, 

when the number of the vertices equal 53, the top-1 accuracy of the ER(0.2) model equal 73.6%, 

which is 0.4% higher than the top-1 accuracy of the ER(0.2) model with 32 vertices. And only 0.2% 

lower than the best model of experiments in FAIR. Whereas, compared performance of the models, 

the models whose number of the vertices smaller than 32 is more robust than the number of the 

vertices larger than 32. 

 

Figure 21. The loss and accuracy for the ER(0.2) model where the left-up corner is 4 vertices, left-

bottom corner is 24 vertices, right-up corner is 14 vertices and right-bottom corner is 34 vertices. 

 

Figure 22. The loss and accuracy for the ER(0.2) model where the left-up corner is 44 vertices, 

left-bottom corner is 64 vertices, right-up corner is 54 vertices and right-bottom corner is 74 

vertices. 
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In Figure 21 and Figure 22, it is obvious that when the number of the vertices larger than the 32, 

the loss and accuracy in the red rectangles are fluctuated, which means the models are overfitting 

(high variance). It represents that when the number of the vertices larger than the 32, the 

performance of the model will become unstable (More training results will be shown in the 

appendix). 

4.3.Space Cost and Time Cost Estimators 

Due to we don’t have the powerful computation resources, we must track the space and time cost 

of each model, and find the trained limits of our computation resources. To let us know what kinds 

of experiments are suitable for both of our computation resources and our targets. 

In terms of the space cost, we compute the space complexity of our model and use the big-oh 

complexity to be the estimator to fit the space cost tendency. The notations’ descriptions of the 

space complexity are shown in Table 3. 

Param Name Notation 

𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 𝐼 

# 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑓𝑜𝑟 𝐷𝐴𝐺 𝑖 𝑘𝑖 

# 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑓𝑜𝑟 𝐷𝐴𝐺 𝑁 

𝐶𝑙𝑎𝑠𝑠 𝑆𝑖𝑧𝑒 𝐶𝐿 

𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒 𝐵𝑆 

Table 3. The notation description for space complexity 

We separate the space complexity into two portions, which are the space cost of the output data 

and the space cost of parameters of the models. According to the models’ descriptions, all the 

space costs of outputs of the convolutional functions and DAGs are demonstrated in Table 4. 

Output 

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 3𝐼2 

𝐶𝑜𝑛𝑣1 
39

4
𝐼2 

𝐵𝑁1 
39

4
𝐼2 

𝑅𝑒𝐿𝑢 
39

4
𝐼2 

𝐶𝑜𝑛𝑣2 
78

16
𝐼2 

𝐵𝑁2 
78

16
𝐼2 

𝐷𝐴𝐺1 
39

8
𝐼2𝑁 +

117

32
𝐼2𝑘1 +

78

64
𝐼2 
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𝐷𝐴𝐺2 
39

16
𝐼2𝑁 +

39

128
𝐼2𝑘2 +

39

64
𝐼2 

𝐷𝐴𝐺3 
39

32
𝐼2𝑁 +

39

256
𝐼2𝑘3 +

39

128
𝐼2 

𝑅𝑒𝐿𝑢 
39

128
𝐼2 

𝐶𝑜𝑛𝑣3 
5

4
𝐼2 

𝐵𝑁3 
5

4
𝐼2 

𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔 1280 

𝐹𝐶 𝐶𝐿 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝐶𝐿 

Table 4. The space consumption of outputs with unit byte 

The space cost of the outputs is defined as 

𝑆𝑂𝑢𝑡𝑝𝑢𝑡 =
751

8
𝐵𝑆𝐼2 +

273

16
𝐵𝑆𝐼2𝑁 +

117

16
𝐵𝑆𝐼2𝑘1 +

39

64
𝐵𝑆𝐼2𝑘2 +

39

128
𝐵𝑆𝐼2𝑘3 + 4𝐵𝑆𝐶𝐿 + 2560𝐵𝑆(32) 

Based on the models’ descriptions, all the space cost of parameters of the convolutional functions 

and DAGs are demonstrated in Table 5. 

Param 

𝐶𝑜𝑛𝑣1 1053 
𝐶𝑜𝑛𝑣2 27378 
𝐷𝐴𝐺1 6786𝑁 

𝐷𝐴𝐺2 25740𝑁 − 12870𝑘2 

𝐷𝐴𝐺3 100152𝑁 − 50076𝑘3 

𝐶𝑜𝑛𝑣3 399360 

𝐹𝐶 1280𝐶 

Table 5. The space consumption of parameters with unit byte 

The space cost of the parameters is defined as 

𝑆𝑃𝑎𝑟𝑎𝑚 = 1283373 + 398034𝑁 − 38610𝑘2 − 150228𝑘3 + 3840𝐶𝐿 (33) 

The total space cost is 
273

16
BSI2N + 117BSI2k1 +

39

64
BSI2k2 +

39

128
BSI2k3 +

751

8
BSI2 + 4BSCL +

2560BS + 398034N − 38610k2 − 150228k3 + 3840CL + 1283373. 

For the big-oh complexity, it only contains the highest exponential item in the equation. Therefore, 

after removing all the low exponential items, the formula is 
273

16
𝐵𝑆𝐼2𝑁 +

117

16
𝐵𝑆𝐼2𝑘1 +

39

64
𝐵𝑆𝐼2𝑘2 +

39

128
𝐵𝑆𝐼2𝑘3 . Afterward, according to the property of the DAG, the 𝑘1 , 𝑘2  and 𝑘3 

always smaller than 𝑁, therefore, eliminate the other 3 power items except 𝐵𝑆𝐼2𝑁. 
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The big-oh space complexity is defined as 

𝑂(𝐵𝑆𝐼2𝑁) (34) 

According to Formula 34, it is obvious that the image size of the input image has the most effect 

on the space cost. The batch size and the number of the vertices in the DAG layer also influence 

the space cost. 

Regarding the time cost, we also apply the big-oh complexity to estimate the time-cost tendency. 

The notations’ descriptions of the time complexity are shown in Table 6. 

Param Name Notation 

𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 𝐼 

𝐶𝑜𝑛𝑣 𝐾𝑒𝑟𝑛𝑒𝑙 𝑆𝑖𝑧𝑒 𝑓 

𝑂𝑢𝑡𝑝𝑢𝑡 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 𝐻 

𝐹𝑖𝑙𝑙 𝑃𝑖𝑥𝑒𝑙 𝑆𝑖𝑧𝑒 𝑝 

𝑆𝑡𝑒𝑝 𝐿𝑒𝑛𝑔𝑡ℎ 𝑠 

𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒 𝐵𝑆 

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑆𝑖𝑧𝑒 𝐶 

# 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝐷𝐴𝐺 𝑁 

# 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝐷𝐴𝐺 𝐸 

𝐴𝑐𝑐𝑒𝑠𝑠 𝐶𝑖 

𝐸𝑥𝑖𝑡 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐶𝑜 

# 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝐷𝐴𝐺 𝐾 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑉𝑒𝑟𝑡𝑒𝑥 𝑑 

𝐼𝑛 𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑉𝑒𝑟𝑡𝑒𝑥 𝑑𝑖 

𝑂𝑢𝑡 𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑉𝑒𝑟𝑡𝑒𝑥 𝑑𝑜 

Table 6. The notation description for time complexity 

We separate the time cost into two parts either, one is the time-cost of the forward propagation and 

another one is the time-cost for the backward propagation. According to the computations of the 

convolutional function, all the time costs of the forward propagation are demonstrated in Table 7. 

Forward Propagation 

𝐶𝑜𝑛𝑣1 𝐵𝑆 ∗ 𝑁 ∗ (2𝑐𝑓2 − 1) ∗
𝑐

2
∗

𝐼2

4
 

𝐵𝑁1 
𝑐

2
∗

𝐼2

4
 

𝐶𝑜𝑛𝑣2 𝐵𝑆 ∗ 𝑁 ∗ (2𝑐𝑓2 − 1) ∗ 𝐶 ∗
𝐼2

16
 

𝐵𝑁2 
𝑐

2
∗

𝐼2

16
 

𝐷𝐴𝐺1 𝐵𝑆 ∗  
𝐼2

64
∗ {𝐾1[𝑐2 + 𝑐(𝑓2 − 1) − 1] + (

𝑁

2
− 𝐾1) [2𝑐2 + 𝑐(2𝑓2 − 1) − 1]} 
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𝐷𝐴𝐺2 𝐵𝑆 ∗  
𝐼2

256
∗ {𝐾2

′[4𝑐2 + 2𝑐(𝑓2 − 1) − 1] + (𝑁 − 𝐾2
′)[8𝑐2 + 2𝑐(2𝑓2 − 1) − 1]} 

𝐷𝐴𝐺3 𝐵𝑆 ∗  
𝐼2

1024
∗ {𝐾3

′[16𝑐2 + 4𝑐(𝑓2 − 1) − 1] + (𝑁 − 𝐾3
′)[32𝑐2 + 4𝑐(2𝑓2 − 1) − 1]} 

𝐶𝑜𝑛𝑣3 
(8𝑐 − 1) ∗ 1280 

𝐵𝑁3 1280 ∗
𝐼2

64 ∗ 64
 

Table 7. The time consumption of forward propagation 

The time cost of the forward propagation is defined as 

𝑇𝑠𝑛 = 𝐵𝑆 ∗  
𝐼

2𝑛

2

∗ {𝐾𝑛−2 [2𝑛−32
𝑐2 + 2𝑛−3𝑐(𝑓2 − 1) − 1] + (𝑁 − 𝐾𝑛−2) [2𝑛−33

𝑐2 + 2𝑛−3𝑐(2𝑓2 − 1) − 1]} (35) 

where (n ≥ 3). 

In terms of the backward propagation, we set the training time requisition of the operation on each 

vertex 𝑣 as 𝑓 and divide backward propagation into two parts, one is computing the weight and 

neuron error, another one is optimizing the weight. For each vertex, the computation time is 

𝑓1(𝑣) = 2 × 𝑑𝑜 − 1 . Then, the time cost 𝑓2  of the weight value is modified to be a degree 

dependent first-order relation. According to the degree distributions of the ER [3], BA [1], and WS 

[11], we can know that time cost in backward propagation is 𝑇 = 𝑓1 + 𝑓2. Afterward, we combine 

the backward propagation with forward propagation, we can derivate the time cost as Formula 36. 

The big-oh time complexity is defined as 

𝑂(𝐵𝑆𝐼2𝑁3) (36) 

According to Formula 36, it is obvious that the number of the vertices of the DAG has a great 

effect on the time cost, and the image size has a huge influence on the time cost either, but slighter 

than the number of the vertices. 

Meanwhile, among space and time complexities, when the number of vertices increasing, the upper 

bound of the time cost will increase in an exponential way like Figure 23. For example, when we 

training the model with 256 vertices, it cost us almost 2 days to train. Whereas, the model still has 

not finished training during these 2 days. However, for the model with only 4 vertices, it only takes 

us about 4 hours to do the training. 
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Figure 23. The graph of time complexity when both the image size and batch size equal 32 

6.Conclusion 

Through all the experiments we have done, we find that our models have a similar performance 

with the FAIR team, which means the complex-graph-based neural networks are better-performed 

indeed by comparing with some artificial neural networks. Meanwhile, we also find that, when the 

number of vertices increasing, the topology of the neural network will become too random to 

predict. The performance of the neural network sometimes will become unstable and perform high 

variance either. This circumstance points out that, for the graphs whose degree distributions are 

the binomial distribution, there will be a critical number of the vertices, which will make the 

performance of the models get the best with high robust (In our experiments, it is the 32 vertices). 

Rather than when the degree distribution more similar to the Poisson distribution, the performance 

of the neural network becomes better. Because the Poisson distribution requires a huge number of 

vertices, however, the larger number of the vertices, the more unstable model will get. 
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7.Future Work 

7.1.Lambert W Function 

When we do the stage two experiments, we try to find the exact number of the vertices which can 

make the binomial distribution equal to the Poisson distribution. Therefore, we form the equation 

like Formula 37. 

The equation between the binomial distribution and the Poisson distribution is defined as 

𝑝(𝑘) = 𝐶𝑛−1
𝑘 𝑝𝑘(1 − 𝑝)𝑛−1−𝑘 =

(𝑛𝑝)𝑘

𝑘!
𝑒−𝑛𝑝 (37) 

Afterward, we simplify Formula 37 and got Formula 38. 

The simplified equation of Formula 38 is defined as 

𝑒𝑎𝑛−𝑏 =
𝑛𝑘

(𝑛 − 1)(𝑛 − 2) … (𝑛 − 𝑘)
(38) 

where 𝑎 = [𝑙𝑛(1 − 𝑝) + 𝑝] 𝑎𝑛𝑑 𝑏 = (𝑘 + 1)𝑙𝑛 (1 − 𝑝). 

Compared Formula 37 with the Lambert W Function. 

The Lambert W Function is defined as 

𝑤𝑒𝑤 = 𝑧 (39) 

𝑒−𝑐𝑥 = 𝑎0

∏ (𝑥 − 𝑟𝑖)
∞
𝑖=1

∏ (𝑥 − 𝑠𝑖)
∞
𝑖=1

(40) 

where 𝑟𝑖 and 𝑠𝑖 are distinct real constants and 𝑥 is a function of the eigenenergy. 

These two equations are similar if we take 𝑎𝑛 − 𝑏 as −𝑐𝑥 and 𝑛 as 𝑥. Therefore, in the future, we 

can try to use the lambert w function to solve Formula 38 and get the exact number of the vertices 

which can satisfy Formula 37. Afterward, we can use this number of vertices to do the training and 

check the exact relationship between the Poisson distribution and performance of the neural 

network. 

7.2.Relational Graph 

The relational graph [5] is a new method to apply the complex graphs into deep learning which is 

proposed by the FAIR team. These kinds of graphs remove the directions between the vertices in 

DAGs and make each pair of vertices in the complex graphs can exchange information, rather than 

the single direction in DAG. In this case, the relational graphs remove some constraints in DAG, 

which let almost all kinds of graph attributes can be used to estimate the relationship between 
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topology and performance of the neural networks. Therefore, in the future, we can change our 

neural network generator to support transforming the complex graphs as relational graphs. 

 

Figure 24. The relational graph representation in Facebook AI Research’s new paper Graph 

Structure of Neural Network [5] 

7.3.Recurrent Neural Network 

Because all of our works right now are just for image classification with Convolutional Neural 

Network. In the future, we are excited to change our neural network generator to support the 

Recurrent Neural Network units and try to find the relationship between the topology and 

performance of the Recurrent Neural Network [10]. 

7.4.Real-World Networks 

Due to our actual brains’ neural networks are the real-world networks. Therefore, we think about 

whether there are some common topologies or special attributes for the real-world networks that 

will make the performance of the neural network become better. Therefore, in the future, we will 

collect some topologies from the real-world, like Twitter, Instagram, and Weibo, to check whether 

the real-world networks are good as the human-designed neural networks. 
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Appendix 

ER Graph Image. The images below are the illustrations of some of the ER graphs for the first 

DAG layer, we used for our neural network generator. 

 

Figure 25. The image of the ER(0.2) model by applying in the first DAG layer from left to right 

and top to bottom the number of the vertices are 4, 14, 24, 32, 44, 54, 64, 74 and 128 

 

Figure 26. The image of the ER(0.2) model by applying in the first DAG layer with 256 vertices 
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Figure 27. The image of the ER model by applying in the first DAG layer with 32 vertices from 

left to right and top to bottom the value of the wire-able probabilities are 0.2, 0.4, 0.6 and 0.8 

BA Graph Image. The images below are the illustrations of some of the BA graphs for the first 

DAG layer, we used for our neural network generator. 

 

Figure 28. The image of the BA model by applying in the first DAG layer with 32 vertices from 

left to right and top to bottom the value of the wire-able edges are 1, 2, 3 and 5 
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Figure 29. The image of the BA model by applying in the first DAG layer with 32 vertices and 7 

wire-able edges 

WS Graph Image. The images below are the illustrations of some of the WS graphs for the first 

DAG layer, we used for our neural network generator. 

 

Figure 30. The image of the WS model by applying in the first DAG layer with 32 vertices and 2 

nearest neighbors from left to right and top to bottom the value of the wire-able probabilities are 

0, 0.25, 0.5, 0.75 and 1 
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Figure 31. The image of the WS model by applying in the first DAG layer with 32 vertices and 4 

nearest neighbors from left to right and top to bottom the value of the wire-able probabilities are 

0, 0.25, 0.5, 0.75 and 1 

 

Figure 32. The image of the WS model by applying in the first DAG layer with 32 vertices and 6 

nearest neighbors from left to right and top to bottom the value of the wire-able probabilities are 

0, 0.25, 0.5, 0.75 and 1 
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Figure 33. The image of the WS model by applying in the first DAG layer with 32 vertices and 8 

nearest neighbors from left to right and top to bottom the value of the wire-able probabilities are 

0, 0.25, 0.5, 0.75 and 1 
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Accuracy and Loss. The images below are the illustration of some training accuracy and loss 

logging information. 

 

Figure 34. The image of the accuracy and loss for ER(0.2) model with random seed 1 from left to 

right and top to bottom the value of the number of the vertices are 4, 14, 24, 34, 44, 54, 64, 74 and 

another 74 w random seed 2 

 

Figure 35. The image of the accuracy and loss for ER model with 32 vertices and from the left to 

right and top to bottom the value of the wire-able probabilities are 0.2, 0.4, 0.6 and 0.8 
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Figure 36. The image of the accuracy and loss for BA model with 32 vertices and from the left to 

right and top to bottom the number of the wire-able edges are 1, 2, 3, 5 and 7 
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Figure 37. The image of the accuracy and loss for WS model with 32 vertices and 0 wire-able 

probability and from the left to right and top to bottom the number of the nearest neighbors are 2, 

4, 6 and 8  

 

Figure 38. The image of the accuracy and loss for WS model with 32 vertices and 0.25 wire-able 

probability and from the left to right and top to bottom the number of the nearest neighbors are 2, 

4, 6 and 8  
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Figure 39. The image of the accuracy and loss for WS model with 32 vertices and 0.5 wire-able 

probability and from the left to right and top to bottom the number of the nearest neighbors are 2, 

4, 6 and 8 

 

Figure 40. The image of the accuracy and loss for WS model with 32 vertices and 0.75 wire-able 

probability and from the left to right and top to bottom the number of the nearest neighbors are 2, 

4, 6 and 8 
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Figure 41. The image of the accuracy and loss for WS model with 32 vertices and 1 wire-able 

probability and from the left to right and top to bottom the number of the nearest neighbors are 2, 

4, 6 and 8 
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Member Contribution. Jarvis (1730026042) did all the coding parts (Random Graph Generator, 

Graph Data Reader, Neural Network Generator, Training Optimization Components, Training 

Parameter Configurator and Training Information Logger), all the stage-two experiments, a part 

of the FAIR team’s experiments repetition (ER), the space cost big-oh complexity, the Final Thesis 

First Draft version 1 and the Final Thesis First Draft version 3. Shawn (1730026116) did two parts 

of the FAIR team’s experiments repetition (BA and WS), the time cost big-oh complexity, and the 

Final Thesis First Draft version 2. 


