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Abstract. Stereo matching, a fundamental challenge in computer vi-
sion, has seen remarkable achievements through iterative mechanisms
such as RAFT-Stereo and IGEV-Stereo. However, these methods still
underperform in ill-posed regions, such as those with occlusions and chal-
lenging textures, due to a lack of sufficiently effective motion information
in the correlations for these areas to support iterative refinement. How
to employ a more rational iterative sampling strategy when obtaining
sampled correlations is a question that warrants further investigation.
This paper introduces the Adaptive Error Aware Cost Volume (AEACV),
which addresses these challenges by integrating the following two mod-
ules: 1) Adaptive Error Aware Sampling (AEAS) module dynamically
adjusts the sampling range by estimating the error map, effectively opti-
mizing the convergence speed during the disparity estimation process. 2)
Error Aware Correlation (EAC) technique that excludes ill-posed regions
from cost-volume significantly improves the accuracy of stereo matching.
The effectiveness of AEACV-Stereo is validated through extensive ex-
periments, showcasing its superior performance in various scenarios, in-
cluding those with challenging occlusions. Our method (AEACV-Stereo)
ranks first on KITTI 2015, Middlebury, and ETH3D, surpassing existing
published methods. It achieves comparable accuracy by utilizing just one-
third of the cost volume sampling iterations. Additionally, our method
outperforms existing works in zero-shot generalization capabilities across
various datasets.

1 Introduction

The emergence of stereo-matching algorithms has revolutionized various fields,
including autonomous driving, robotics, and virtual reality, by enabling depth
perception through the estimation of disparities between pairs of camera-captured
images.

Recent advancements have been made in leveraging 3D Convolutional Neural
Networks (CNNs) for cost volume aggregation, yielding promising results [1,7,
33, 35]. Nevertheless, these methods are computationally intensive. To address
this challenge, researchers have turned to iterative algorithms based on cost
volume refinement [12, 14, 34, 40, 44], which significantly reduce computational
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Fig. 1: Performance of our AEACV-Stereo. (a) Comparison with current stereo meth-
ods [2,4, 12,14, 30, 33, 34, 44, 45] on KITTI 2015 leaderboard. (b) Comparison with
current stereo methods [8, 11,14, 22,28, 30, 34,37,46] on ETH3D leaderboard. (c) End
Points Error (EPE) comparison with IGEV-Stereo [34] on SceneFlow test set as the
number of iterations changes.

complexity and allow for higher-resolution cost volumes, enhancing algorithmic
performance.

Despite these advancements, these methods ignore the noise caused by occlu-
sion during the iteration process. The existing work still has the following prob-
lem. The existing work RAFT-Stereo, IGEV, Selective-IGEV, they use GRU
module to enhance the edge details, especially, Selective IGEV uses different fre-
quences to balance the edge region and the smooth region effect. However, the
occluded error information is also repeated in the refine module.

Considering this problem, we design a new refine mechanism. Firstly, update
the occlusion region and correlation volume, then update the final disparity.in
iterative methods, pixels with a disparity far from the ground truth and low pre-
cision require a larger sampling range to achieve swift convergence. The occlusion
information is embedded by the network sending to the correlation module, and
GRU module receive a complete information to regress the final disparity. In
this process, we can use less iteration numbers in the training process, because
of the occlusion region aware refine module. In contrast, pixels with a disparity
close to the ground truth demand smaller steps for more nuanced refinement.
Second, correlations in these regions lack reliable motion information, hindering
the iterative process [12,14,44].

In this paper, we introduce a simple and effective approach to tackle these
issues. We propose a dynamic sampling strategy based on an error map de-
rived from a lightweight, unsupervised error estimation module. This strategy
dynamically adjusts the sampling range and planes, enabling faster convergence.
Furthermore, we present a method for constructing a cleaner cost volume by fil-
tering out noise from ill-posed areas, preventing interference during the iterative
process for more accurate and cleaner boundaries, as shown in Fig. 2.

Our proposed method, AEACV-Stereo, demonstrates superior performance
across benchmark datasets such as SceneFlow [18], KITTI 2015 [19], Middle-
bury [23] and ETH3D [24], surpassing existing state-of-the-art methods. In terms
of iterative speed, our method achieves comparable accuracy to the 32"¢ iteration
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Fig. 2: Visualization of our AEACV-Stereo and IGEV-Stereo [34] on KITTI 2015. With
the error aware mask distinguishing the I1l-Posed and normal regions more clearly, our
method can perform cleaner boundaries from foreground and background. Up-Left:
Input Left Image. Up-Right: Generated Error Aware Mask. Bottom-Left: Disparity
Predicted by IGEV-Stereo [34]. Bottom-Right: Disparity Predicted by AEACV-Stereo.

of IGEV-Stereo [34] with only the 10" iteration, as shown in Fig.1. Additionally,
the AEACV-RAFT version significantly outperforms RAFT-Stereo [14], validat-
ing the method’s transferability.

The primary contributions of our work can be summarized as follows: 1)
We present a dynamic sampling strategy based on an error map, significantly
accelerating iterative speed. 2) We introduce a cost volume construction method
that effectively filters out noise from ill-posed regions, enhancing the accuracy
of disparity prediction. 3) Our method has demonstrated its effectiveness by
outperforming existing methods across various public benchmarks, reinforcing
the practicality and potential impact of our approach.

2 Related Works

Learning-based & Iterative Approaches. With the development of deep
learning methods, a proliferation of neural network architectures [1,5,7,9,13,14,
20,31-35,38,39] for stereo matching has emerged, marking a significant evolution
in the domain over recent years. These methods, like GC-Net [9], PSM-Net [1],
and ACV-Net [33], compute the 4D cost volume and deploy the 3D convolu-
tional layers to aggregate the cost volume for predicting disparities. However,
their high computational demands limit their efficiency, especially with high-
resolution inputs. To address this limitation, cascade, and cost volume pyramid
methods [6, 25, 36] have been introduced. For instance, CasStereo [6] and CF-
Net [25] employ a coarse-to-fine strategy to improve efficiency. Yet, this approach
carries the risk of propagating coarse disparity errors. In this case, iterative meth-
ods [12,14,34,40,44] have been proposed. RAFT-Stereo [14] starts to recurrently
update the disparity field using local correlation information retrieved from the
3D cost volume. IGEV-Stereo [34] further uses lightweight 3D convolution to
obtain the representation of global information and combines it with local infor-
mation, which significantly improves the effect of challenging areas. This itera-
tive scheme stands out for its ability to balance computational efficiency with
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the need for precise disparity estimation. CREStereo [12] introduces a hierarchi-
cal network architecture that employs a coarse-to-fine strategy, complemented
by a stacked cascaded approach for inference, effectively supplanting the tradi-
tional single-resolution iterative framework. Similarly, DLNR [44] innovates by
employing LSTM instead of GRU, which offers the distinct benefit of decou-
pling the updating of hidden states from the disparity prediction process. Most
methods [21,29] utilize CNN-based spatial propagation to refine the disparity in
occluded regions, yet they demonstrate limited efficacy in addressing large and
irregular occluded regions. Moreover, occlusion-aware techniques like GOAT [16]
integrate an occlusion estimation module to produce occlusion masks, intending
to tack occluded areas. However, potential inaccuracies in these masks might
inadvertently affect non-occluded regions.

Sampling Strategies for Cost Volume. Initially, iterative optimization
schemes have introduced fixed sampling range [14,34] for cost volume as a strat-
egy to reduce computational load. However, adaptively retrieving information
from the cost volume based on the current disparity status is more reasonable.
For instance, a global sampling range can provide more information to speed up
convergence when disparity worsens, and a local one can prevent fluctuations
when disparity is close to ground truth. CREStereo [12] extends the sampling
interval to the y direction, improving the performance when epipolar lines are
not well aligned; CREStereo++ [8] and UASNet [17] employ cost volume to com-
pute error maps and adjust the sampling space accordingly, facilitating robust
stereo matching adaptable to a range of datasets. However, the computation
of error maps is contingent upon the recalculation of the cost volume at each
iteration. PCV-Stereo [40] introduced an adaptive sampling strategy, utilizing
a multi-Gaussian distribution to fit the ground truth and dynamically adjust
the sampling range. Despite its potential to significantly reduce the number of
iterations, this method incorporates additional supervision, which introduces a
degree of complexity.

3 Method

In this section, we introduce three main components of our Adaptive Error
Aware Cost Volume Stereo matching network (AEACV-Stereo), which are 1)
Adaptive Error Aware Sampling, 2) Error Aware Correlation and 3) Confidence
Aware Refinement. The whole pipeline is shown in Fig. 3.

3.1 Adaptive Error Aware Sampling

To achieve an adaptive sampling mechanism, previous methods mainly use
cost volume to estimate the error map from coarse to fine [8, 17] or employ
Gaussian distribution [40] to fit ground truth. However, these approaches involve
redundant computations of cost volume in each stage or introduce additional su-
pervisory signals like KL divergence. In our design, we introduce a lightweight
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Adaptive Error Aware w\ﬂ» o Adjustment ol
A

Sampling (AEAS)

Error Map. Sampling Range Error Map
Confidence Aware
Refinement (CAR)

Tll-Posed

-
Error Aware '&;M}Z\ Masking
Correlation (EAC) e )

Warped Right Image Error Aware Corr

Fig. 3: Our proposed AEACV-Stereo comprises three key components: 1) Adaptive
Error Aware Sampling, 2) Error Aware Correlation, and 3) Confidence Aware Refine-
ment. Our method first predicts an Error Map to adaptively adjust the sampling range
and employs the sampled planes to compute Error Aware Correlation based on the
generated ill-posed mask. The Error Aware Correlation is then combined with tradi-
tional correlations to iteratively update the predicted disparity through ConvGRUs.

error estimation module to generate the Error Map, measuring the disparity sta-
tus without any supervision. This decoupled design separates the computations
between cost volume and error map, enabling the cost volume to be calculated
once and shared for all iterations. Our sampling strategy is illustrated in Fig. 4.

Error Estimation. In our Error Estimation Module, we refine left and
right features F”, F' € R>"*W and warp the refined right feature F, ;. by
applying current disparity (disp) as follows:

T?efine = CNN(Fl) (1)
F:!‘J/Cine = warp(F;efinm dZSp)

where i € [l,r] represents left and right features, F:;’J‘Qme represents warped

refined right feature. In this case, we can decouple the computations of cost
volume from generating the error map (error) by employing cosine similarity:

l

. F:ev;ine * Frefine (2)

el | # 1EY

refine

error =1
efine| ‘

Adaptive Sampling Range. With pre-defined ¢ and error, we can obtain
adaptive sampling range 7,4, without any supervision. Equation 3 shows how to
get radp:

Tadp = €rTOT * % *T (3)

where o = 32 is a hyperparameter that represents the max sampling boundary
when error equals 1 for the input resolution, dr on behalf of downsampling ratio,
re{-R,—R+1,...,0,...,R—1,R}, and R is a hyperparameter. Then, we
directly plus the 7,4, to the current disparity to obtain all sampling planes.
Fig. 5 illustrates how our adaptive error aware sampling mechanism worked
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Current Disparity
Left & Right Image Error Aware Correlation
Current Disparity Right Feature
ﬁ Left & Right Feature Error Aware Warping
! b L _

o Left Feature
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N

2+ Error Aware Correlation|

E—

Exrror Estimation Module Error Map.

X (=1 % Omax ~ I * Oax) Warped Right Feature  Warped Right Image

111-Posed Mask
Convolutional GRU
A
(INTS :
Adaptive Sampling Range Sample Planes ) J Convolutional
I Gate Recurrent Unit
+ Current Disparity. Context Feature j
Current Disparity Sampled Correlation Pyramid

Adaptive Error Aware

Fig. 4: The architecture of proposed modules. Left: Adaptive Error Aware Sampling.
Up-Right: Error Aware Correlation. Bottom-Right: ConvGRU with Error Aware Cor-
relation and Sampled Correlation Pyramid. Details are described in Section 3.

for each iteration. Compared with the fixed sampling method employed in [12,
14,34,44], our sampling mechanism can adjust sampling planes and range during
convergence. Unlike [8,17,40], our method doesn’t introduce any extra supervi-
sions and redundant computations of correlation, which is easier to implement
and transfer to other architectures.

3.2 Error Aware Correlation

For ill-posed areas, the correlations derived from conventional computation
methods are less effective, given the absence of corresponding regions in the
right image, hindering the provision of meaningful motion information. We have
observed that both all-pair correlations [14,34] or correlations derived from warp-
based methods [8,17,26] are susceptible to the impact of this issue, as shown in
Fig. 6. Therefore, we introduce an Error Aware Correlation (EAC) to address
this problem more clearly, which is illustrated in Fig. 4 and 6. Our EAC module
effectively reduces noise in ill-posed regions within correlations and provides
boundary information to distinguish these areas. This enables the CAR module
to refine these regions accordingly.

Error Aware Warping. To distinguish valid and invalid areas, we propose
generating a mask € R>HXW through error aware warping to obtain clearer

information in advance from left and right images I;, I, € R¥**#*W " according
to equation 4.
IV = warp(I,, disp)
S| L -1V (4)
maskz—” =1 <T

c
where ¢ = 3 is the RGB channel and 7 = 0.05 is a threshold, which is a hy-
perparameter, to control whether the pixel inside valid or invalid areas. Based
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Fig. 5: The visualization of the fixed sampling method (First-Row) and our adaptive
error aware sampling method (Bottom-Rows) at each iteration.

on second equation in 1, we use F" and current disparity to yield warped right
feature F"v € RI*HXW "like [8,17,26]. After that, we apply the error aware
mask to mask out F"" and explicitly separate invalid and valid regions.

Correlation Computation. Given all sampling planes, we compute Error
Aware Correlation by using F! and masked out F™" individually. We pick up
p = 9 sampling planes from 74, (Teqp func: 3 and p represents the number of
sampling planes), which consists of the current disparity plane and p — 1 planes
symmetric with it. Then we employ each plane to compute Error Aware Warp-
ing mentioned before to obtain p pairs of F! and mask out F"" . These pairs of
features will be used to compute correlations individually as follows:

Corrliy) = 5 551 FU(ip) F™ (i) (5)

where i, means i*" planing feature, and C represents feature channel. After-
ward, all Error Aware Correlations will be concatenated together and deployed
in Convolutional GRU (ConvGRU) [14,34] to generate the motion features with
other correlations.

In comparison with other warping-based methods [8,26], our Error Aware
Correlation can generate clearer boundaries between ill-posed and normal re-
gions, and explicitly eliminating the effects of ill-posed areas from the cost vol-
ume using an error aware mask, as demonstrated in Fig. 6. Due to the strong
connection between warping quality and disparity status. Considering the signif-
icant impact of warping quality on disparity status, we integrate our Error Aware
Correlation (EAC) with Geometric Encoding Volume (GEV) and All-Pairs Cor-
relation (APC) to predict motion features. This hybrid approach employs GEV
and APC to guide the initial convergence, with EAC contributing to refinement
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Fig. 6: Visualization of matching correlations in different sampling planes. The GEV
treats all regions the same. Although APC can differentiate these two regions, it cannot
provide clear boundaries. In contrast, our Error Aware Correlation can clearly distin-
guish ill-posed and normal regions, providing more accurate matching details to the
network. Left-Column: Left and Right Images from SceneFlow and Predicted Dispar-
ity. Up-Row: Geometric Encoding Volume (GEV) in IGEV-Stereo [34]. Middle-Row:
All-Pairs Correlation (APC) in RAFT-Stereo [14]. Bottom-Row: Our Error Aware Cor-
relation.

in later stages, ensuring stable convergence and preventing the accumulation of
errors caused by poor warping quality at the outset.

3.3 Confidence Aware Refinement

To further integrate the error map into the entire model, we draw inspiration
from PCV-Stereo [40] and refine the last output disparity map with the final
error map. We employ a confidence-aware refinement module to enhance the
disparity in detailed areas. The confidence map is reconstructed as:

conf =1—error (6)

Given the confidence map, we refined the final disparity step by step as

follows: A
F¥sp — CN Ny (disp)

Fe = Concat(F"*?, F' F}, tin.)
© = CNNy(ReLU(CN Na(F°t))
di8prefined = disp + x * conf

(7)

where F! means left feature, F! means refined left feature.

refine

3.4 Loss Function

Similar to [34], we employ smooth L1 Loss [1] on initial disparity dy by using
equation 8, if present. Otherwise, the L;,;; will be zero.
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Table 1: Quantitative evaluation on SceneFlow test set. The best result is in bold.

Method  GweNet [7]  GANet [41]  CSPN [3] LEAStereo [4] ACVNet [33] IGEV-Stereo [34] ours
AvgErr 0.76 0.84 0.78 0.78 0.48 0.47 0.46
Lz‘nit = STTLOOthL1 (do - dgt) (8)

where d4; means the ground truth disparity. We calculate the L1 loss on all
predicted disparities {d;}~_;. We follow [14] to exponentially increase weights,
and the total loss is defined as:

Lstereo = Linit + Ejil’yN_ZHdl - dgtHl (9)

3

where v = 0.9, and dy; represent ground truth.

4 Experiments

4.1 Implementation Details

Our model’s performance is evaluated on the SceneFlow [18] dataset and
three public benchmarks: ETH3D [24], Middlebury [23], and KITTI-2015 [19].
The model is implemented using PyTorch and experiments are conducted on
NVIDIA A100 GPUs. For pretraining and ablation studies, the model is ini-
tially trained on the synthetic SceneFlow [18] training set (both cleanpass and
finalpass) for 200k iterations with a batch size of 8, followed by evaluation on the
SceneFlow test set. We employ the AdamW optimizer [10] with an initial learning
rate of 2e~* and use a OneCycle scheduler [27] with a warm-up strategy. Data
augmentation is applied in accordance with the settings in IGEV-Stereo [34].
Images are randomly cropped to 320 x 736.

When fine-tuning on KITTI [19], the pre-trained SceneFlow model is used on
mixed KITTI 2012 and KITTT 2015 training image pairs for 20k iterations, with a
learning rate of le~*. For Middlebury [23] and ETH3D [24], given the limited size
of the training sets, the pre-trained model is further trained on mixed datasets
comprising synthetic SceneFlow [18], CREStereo [12], ETH3D [24], and Middle-
bury (2005, 2006, 2021, and V3) [23]. Consistent data augmentation including
saturation change, image perturbance, and random scale is applied during both
the pretraining and fine-tuning stages.

4.2 Comparisons with State-of-the-art

We evaluate AEACV-Stereo on SceneFlow, KITTI 2015, ETH3D, and Mid-
dlebury, comparing its performance with the published state-of-the-art methods.

As shown in Tab. 1, on the SceneFlow test set, when compared to existing
methods, we achieve a new state-of-the-art EPE of 0.46, highlighting the superior
performance of our approach.
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Table 2: Quantitative evaluation on the KITTI-2015 leaderboard. "Noc" and "All"
indicate the non-occluded and overall regions, respectively. The best results for each
evaluation metric are bolded, and the second-best are underlined.

Noc(%) AL(%)
Method Di-bg Dl—(fg Di-all | Di-bg Dl(-fg Di-all
RAFT-Stereo [14] 145 294 169 | 158 305  1.82
CREStereo [12] 1.33 2.60 1.54 1.45 2.86 1.69
DLNR [44] 1.45 2.39 1.61 1.60 2.59 1.76
CroCo v2 [30] 1.30 2.56 1.51 1.38 2.65 1.59
IGEV-Stereo [34] 1.27 2.62 1.49 1.38 2.67 1.59
AEACV-Stereo (ours) | 1.23 2.36 1.42 1.35 2.38 1.52

Table 3: Quantitative evaluation on the Middlebury leaderboard. "Noc" and "All"
indicate the non-occluded and overall regions, respectively. The best results for each
evaluation metric are bolded, and the second-best are underlined.

Noc(%) AL(%)

Method AvgErr RMS Bad 2.0 Bad 4.0‘Angrr RMS Bad 2.0 Bad 4.0

RAFT-Stereo [1"1] 1.27 8.40 4.74 2.75 2.71 12.6 9.37 6.42
CroCo v2 [30] 1.76 8.91 4.90 4.18 2.36 10.6 11.1 6.75
GMStereo [30] 1.31 6.45 7.14 2.96 1.89 8.03 11.7 6.07
CREStereo [12] 1.15 7.70 3.71 2.04 2.10 10.5 8.13 5.05

DLNR [44] 1.06 778 3.20 1.89 | 1.91 102 6.98  4.77

IGEV-Stereo [3/’1] 2.89 12.8 4.83 3.33 3.64 15.1 8.16 5.79

AEACV-Stereo (ours)| 0.99 6.32 4.15 1.97 | 1.56 8.13 7.35 4.22

We assess AEACV-Stereo on the KITTI-2015 test set, and the results are
submitted to the online KITTI leaderboard. As presented in Tab. 2, our method
secures the 1% position among all published methods and ranks 2"? overall
out of 300+ submissions. We outperform IGEV and Croco v2 by 7% on the
D1-all metric, achieving the best result across all listed metrics, with notable
improvements observed in both non-occluded and overall regions.

Regarding Middlebury, our model is trained on mixed datasets with 5% aug-
mented training data from Middlebury datasets. The training process continues
for an additional 150k iterations with 768 x 1024 image crops, considering the
larger size of Middlebury image pairs. The results are submitted to the online
evaluation benchmark. As shown in Tab. 3, our method achieves the best aver-
age error and competitive Bad 2.0 and Bad 4.0 metric compared to all published
methods. Given our method’s focus on filtering out noises and adverse effects in
challenging regions, the outstanding results in average error highlight the over-
all improvement of our method across the entire image. As depicted in Fig 7
and Fig. 8, our method demonstrates more accurate predictions in challenging
areas, such as the boundaries of different objects, enabling better differentiation
between them.

For ETH3D, we train our network on the complete training set, incorporating
2.5% augmented training data from the ETH3D low-res two-view stereo dataset.
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Left Image IGEV-Stereo [34] DLNR [44] CREStereo [12] Ours

Fig. 7: The visualization of AEACV-Stereo(ours) and other state-of-the-art methods
on Middlebury dataset.

Table 4: Quantitative evaluation on Table 5: Model generalization experi-
the ETH3D leaderboard in non-occluded ments. 2-pixel error rate for Middlebury

(noc) regions. and 1-pixel error rate for ETH3D.
Method AvgErr Bad 1.0 Bad 0.5 Model ll\l/hlc;dlebury ETH3D
HITNet [28] 020 279 7.89 alf quater
RAFT-Stereo [14] 0.18 2.44 7.04 GANet [41] 13.5 8.5 6.5
DIP-Stereo [46] 0.18 1.97 6.74 DSMNet [42] 13.8 8.1 6.2
GMStereo [37]  0.19  1.83  5.94 FC-GANet [43] 102 7.8 5.8
CREStereo [12] 0.13 098  3.58 Graft-GANet [15] 9.8 - 6.2
CroCo v2 [30] 0.14  0.99 3.27 RAFT-Stereo [14] 8.7 7.3 3.2
IGEV-Stereo [34] 0.14 1.12 3.52 IGEV-Stereo [34] 7.1 6.2 3.6
AEACV-Stereo(ours) 0.13 0.80  3.17 AEACV-Stereo(ours) 5.9 5.1 3.7

The same number of iterations are applied with 416 x 640 image crops. Quanti-
tative comparisons are provided in Tab. 4, which showcase our state-of-the-art
performance among published methods on the online benchmark for the majority
of metrics. Remarkably, our method outperforms the published state-of-the-art
by 18% on the Bad 1.0 metric, establishing itself as the current state-of-the-art
on the leaderboard.

4.3 Zero-Shot Generalization

Exploring the adaptability of AEACV-Stereo, we investigate its potential to
generalize from synthetic training data to previously unseen real world datasets.
Given the difficulty in acquiring large real world datasets for training, the abil-
ity of stereo models to exhibit generality is of paramount importance. We train
AEACV-Stereo using the SceneFlow dataset, adopting the identical settings as
IGEV-Stereo [34], and then we directly evaluate its effectiveness on the Mid-
dlebury 2014 and ETH3D training sets. As depicted in Tab. 5, AEACV-Stereo
demonstrates competitive performance in the same zero-shot setting.
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(a) Left age (b) IGEV-Stereo [34] (c) Ours
Fig. 8: The visualization of IGEV-Stereo and AEACV-Stereo(ours) on ETH3D dataset.

Table 6: Ablation study of proposed module on the SceneFlow test set. AEAS, CAR
and EAC refer to Adaptive Error Aware Sampling, Confidence Aware Refinement and
Error Aware Correlation module, respectively. Baseline is the official IGEV-Stereo [34].

Model ‘ AEAS CAR  EAC ‘ AvgErr Bad 1.0 ‘ Params(M)

Baseline | | 0479 247 | 1260
AEAS v 0.470  2.43 13.30
AEAS+CAR| v v 0.466  2.42 13.53
Full method | v/ v v ] 0462 240 13.53

4.4 Ablation Study

To further validate the efficacy of each module in our method and explore the
optimal configuration of error-aware correlation, we conducted comprehensive
ablation experiments on the SceneFlow dataset.

Model Components. As illustrated in Tab. 6, the utilization of an adaptive
sampling strategy results in enhanced convergence and improved prediction ac-
curacy. Compared to baseline model, our adaptive sampling approach enables a
denser sampling space in accurately estimated regions and expands the sampling
range in challenging areas, enabling more comprehensive information acquisition
for updating the iterative direction. The incorporation of the confidence-aware
refinement module allows for additional fine-tuning, refining the precision of the
obtained disparity map.

Additionally, the introduction of the designed Error Aware Correlation mod-
ule further elevates the accuracy of our model on the SceneFlow test set, albeit
with an increase in computational complexity. However, its inclusion results in
higher precision, ensuring overall improved performance, especially when dealing
with ill-posed regions.

Number of sampling planes Since our proposed Error Aware Correlation
(EAC) relies on the number of sampling planes, and the utilization of different
planes can yield varying performance, we conduct an exploration of different set-
tings to determine the most suitable configuration for our model. Tab. 7 presents
the results of different correlation settings. We apply the same training settings
on the synthetic SceneFlow training set and evaluate our model on the Scene-
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Table 7: Exploration of plane numbers. Standard evaluation thresholds include a 2-
pixel error rate for Middlebury [23] and a 3-pixel error rate for KITTI 2015 [19].

SceneFlow Middlebury KITTL2015

Model Planes ‘ AvgErr  half quater
AEAS+CAR - ‘ 0.466 7.37 6.65 6.07
1 0.466 5.84 5.64 6.13
Full Method 3 0.465 5.56 6.93 6.03
9 0.462 5.88 5.09 5.86

Table 8: Model generalization experiments. Table 9: Quantitative evaluation
2-pixel error rate for Middlebury-Half and on the KITTI-2015 leaderboard

1-pixel error rate for ETH3D. over non-occluded (noc) regions.
, SceneFlow . . . , Noc (%)
Model AvgFrr Bad 1,0 Mid-IT ETHSD Model D1-bg D1-fg D1-all
RAFT-Stereo [14] 0.72 3.4 7.3 3.2 RAFT-Stereo [14] 1.58 3.05 1.82
AEACV (RAFT-based) 0.56 3.0 6.4 2.9 AEACV (RAFT-based) 1.52 2.72 1.72

Flow test set, as well as the training sets of Middlebury and KITTI 2015. While
the 1-plane and 3-plane configurations show marginal improvements in Scene-
Flow, the overall performance on Middlebury and KITTI 2015 is enhanced. The
9-plane setting ultimately achieves the best overall performance. The increase
in the number of planes assists the model in obtaining a more precise motion
direction under conditions of imprecise disparity estimation. Therefore, the final
choice for our correlation configuration is the 9-plane setting.

4.5 Transferability of our method

Our error-aware correlation is built on the all-pairs cost volume, making it
easily transferable to other cost-volume-based stereo-matching approaches. To
further validate the efficacy and transferability of our designs across different
cost-volume-based methods, we implement a new version of our method based
on RAFT-Stereo [14], following the same training settings.

We initially train the AEACV (RAFT-based) method on the synthetic Scene-
Flow training set for 200k iterations. As shown in Tab. 8, we evaluate our method
on the SceneFlow test set, as well as the Middlebury and ETH3D training sets.
The results show that our method not only further promotes convergence on
SceneFlow but also exhibits improved generalization capabilities. Additionally,
we perform fine-tuning on KITTT using the same settings as we used. As demon-
strated in Tab. 9. Compared with the RAFT-Stereo [14], our AEACV (RAFT-
based) significantly improves the overall performance.

5 Conclusion and Discussion

Our proposed AEACV-Stereo achieves state-of-the-art results on the real
world and synthetic datasets, and outperforms all published works on KITTI
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2015, ETH3D, Middlebury and SceneFlow by leveraging Adaptive Error Aware
Sampling module, Error Aware Correlation module, and Confidence Aware Re-
finement module, which achieve similar performance to previous SOTA (32 iter-
ations) in only 10 iterations. Meanwhile, we also validate our method’s flexibility
and robustness by incorporating our module into RAFT-Stereo.

Our model only requires one-third of iterations to reach excellent accuracy.
However, the extra warping computations still cause our model to have a similar
inference time to previous iterative-based methods. We are considering introduc-
ing a novel way to further speed up each iteration and the entire inference time.
Furthermore, we are considering transferring our methodology to Multi-View
Stereo Matching, 3D-Reconstruction, and VSLAM.

References

1. Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. pp. 5410-5418
(2018) 1, 3, 8
2. Chen, Q., Ge, B., Quan, J.: Unambiguous pyramid cost volumes fusion for stereo
matching. IEEE Transactions on Circuits and Systems for Video Technology (2023)
2
3. Cheng, X., Wang, P., Yang, R.: Learning depth with convolutional spatial prop-
agation network. IEEE transactions on pattern analysis and machine intelligence
42(10), 2361-2379 (2019) 9
4. Cheng, X., Zhong, Y., Harandi, M., Dai, Y., Chang, X., Li, H., Drummond, T.,
Ge, Z.: Hierarchical neural architecture search for deep stereo matching. Advances
in Neural Information Processing Systems 33, 22158-22169 (2020) 2, 9
5. Duggal, S., Wang, S., Ma, W.C., Hu, R., Urtasun, R.: Deeppruner: Learning
efficient stereo matching via differentiable patchmatch. In: Proceedings of the
IEEE/CVF international conference on computer vision. pp. 4384-4393 (2019)
3

6. Gu, X., Fan, Z., Zhu, S., Dai, Z., Tan, F., Tan, P.: Cascade cost volume for
high-resolution multi-view stereo and stereo matching. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 2495-2504
(2020) 3

7. Guo, X., Yang, K., Yang, W., Wang, X., Li, H.: Group-wise correlation stereo
network. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 3273-3282 (2019) 1, 3, 9

8. Jing, J., Li, J., Xiong, P., Liu, J., Liu, S., Guo, Y., Deng, X., Xu, M., Jiang, L., Sigal,
L.: Uncertainty guided adaptive warping for robust and efficient stereo matching.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 3318-3327 (2023) 2, 4, 6, 7

9. Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P., Kennedy, R., Bachrach, A.,
Bry, A.: End-to-end learning of geometry and context for deep stereo regression. In:
Proceedings of the IEEE international conference on computer vision. pp. 66-75
(2017) 3

10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014) 9

333
334

336
337
338
339

341

342
343

344



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

ECCV 2024 Submission #4123 15

Kwon, O.H., Zell, E.: Image-coupled volume propagation for stereo matching. In:
2023 IEEE International Conference on Image Processing (ICIP). pp. 2510-2514.
IEEE (2023) 2

Li, J., Wang, P., Xiong, P., Cai, T., Yan, Z., Yang, L., Liu, J., Fan, H., Liu, S.:
Practical stereo matching via cascaded recurrent network with adaptive correla-
tion. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. pp. 16263-16272 (2022) 1, 2, 3, 4, 6, 9, 10, 11

Liang, Z., Guo, Y., Feng, Y., Chen, W., Qiao, L., Zhou, L., Zhang, J., Liu, H.:
Stereo matching using multi-level cost volume and multi-scale feature constancy.
IEEE transactions on pattern analysis and machine intelligence 43(1), 300-315
(2019) 3

Lipson, L., Teed, Z., Deng, J.: Raft-stereo: Multilevel recurrent field transforms
for stereo matching. In: 2021 International Conference on 3D Vision (3DV). pp.
218-227. IEEE (2021) 1, 2, 3,4, 6,7, 8,9, 10, 11, 13

Liu, B, Yu, H., Qi, G.: Graftnet: Towards domain generalized stereo matching with
a broad-spectrum and task-oriented feature. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 13012-13021 (2022)
11

Liu, Z., Li, Y., Okutomi, M.: Global occlusion-aware transformer for robust stereo
matching. In: Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision. pp. 3535-3544 (2024) 4

Mao, Y., Liu, Z., Li, W., Dai, Y., Wang, Q., Kim, Y.T., Lee, H.S.: Uasnet: Uncer-
tainty adaptive sampling network for deep stereo matching. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 6311-6319 (2021)
4,6, 7

Mayer, N.; Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox,
T.: A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 4040-4048 (2016) 2, 9

Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 3061-3070
(2015) 2,9, 13

Nie, G.Y., Cheng, M.M., Liu, Y., Liang, Z., Fan, D.P., Liu, Y., Wang, Y.:
Multi-level context ultra-aggregation for stereo matching. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3283—
3291 (2019) 3

Park, J., Joo, K., Hu, Z., Liu, C.K., So Kweon, I.: Non-local spatial propagation
network for depth completion. In: Computer Vision—-ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XIII 16. pp.
120-136. Springer (2020) 4

Ren, W., Liao, Q., Shao, Z., Lin, X., Yue, X., Zhang, Y., Lu, Z.: Patchmatch
stereo++: Patchmatch binocular stereo with continuous disparity optimization.
In: Proceedings of the 31st ACM International Conference on Multimedia. pp.
2315-2325 (2023) 2

Scharstein, D., Hirschmiiller, H., Kitajima, Y., Krathwohl, G., Nesi¢, N., Wang,
X., Westling, P.: High-resolution stereo datasets with subpixel-accurate ground
truth. In: Pattern Recognition: 36th German Conference, GCPR 2014, Miinster,
Germany, September 2-5, 2014, Proceedings 36. pp. 31-42. Springer (2014) 2, 9,
13



427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

16

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

ECCV 2024 Submission #4123

Schops, T., Schonberger, J.L., Galliani, S., Sattler, T., Schindler, K., Pollefeys,
M., Geiger, A.: A multi-view stereo benchmark with high-resolution images and
multi-camera videos. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 3260-3269 (2017) 2, 9

Shen, Z., Dai, Y., Rao, Z.: Cfnet: Cascade and fused cost volume for robust stereo
matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 13906-13915 (2021) 3

Shen, Z., Dai, Y., Song, X., Rao, Z., Zhou, D., Zhang, L.: Pcw-net: Pyramid com-
bination and warping cost volume for stereo matching. In: European Conference
on Computer Vision. pp. 280-297. Springer (2022) 6, 7

Smith, L.N., Topin, N.: Super-convergence: Very fast training of neural networks
using large learning rates. In: Artificial intelligence and machine learning for multi-
domain operations applications. vol. 11006, pp. 369-386. SPIE (2019) 9
Tankovich, V., Hane, C., Zhang, Y., Kowdle, A., Fanello, S., Bouaziz, S.: Hit-
net: Hierarchical iterative tile refinement network for real-time stereo matching.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 14362-14372 (2021) 2, 11

Wang, T., Ma, C., Su, H., Wang, W.: Cspn: Multi-scale cascade spatial pyramid
network for object detection. In: ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). pp. 1490-1494. IEEE (2021)
4

Weinzaepfel, P., Lucas, T., Leroy, V., Cabon, Y., Arora, V., Brégier, R., Csurka, G.,
Antsfeld, L., Chidlovskii, B., Revaud, J.: Croco v2: Improved cross-view completion
pre-training for stereo matching and optical flow. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 17969-17980 (2023) 2, 10, 11
Wu, Z., Wu, X., Zhang, X., Wang, S., Ju, L.: Semantic stereo matching with
pyramid cost volumes. In: Proceedings of the IEEE/CVF international conference
on computer vision. pp. 7484-7493 (2019) 3

Xu, B., Xu, Y., Yang, X., Jia, W., Guo, Y.: Bilateral grid learning for stereo
matching networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 12497-12506 (2021) 3

Xu, G., Cheng, J., Guo, P., Yang, X.: Attention concatenation volume for accurate
and efficient stereo matching. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 12981-12990 (2022) 1, 2, 3, 9
Xu, G., Wang, X., Ding, X., Yang, X.: Iterative geometry encoding volume for
stereo matching. In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. pp. 21919-21928 (2023) 1, 2, 3, 4, 6, 7, 8, 9, 10, 11,
12

Xu, G., Wang, Y., Cheng, J., Tang, J., Yang, X.: Accurate and efficient stereo
matching via attention concatenation volume. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (2023) 1, 3

Xu, G., Wang, Y., Cheng, J., Tang, J., Yang, X.: Accurate and efficient stereo
matching via attention concatenation volume. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (2023) 3

Xu, H., Zhang, J., Cai, J., Rezatofighi, H., Yu, F., Tao, D., Geiger, A.: Unifying
flow, stereo and depth estimation. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2023) 2, 11

Yang, G., Zhao, H., Shi, J., Deng, Z., Jia, J.: Segstereo: Exploiting semantic in-
formation for disparity estimation. In: Proceedings of the European conference on
computer vision (ECCV). pp. 636-651 (2018) 3



477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

39.

40.

41.

42.

43.

44.

45.

46.

ECCV 2024 Submission #4123 17

Yao, C., Jia, Y., Di, H., Li, P., Wu, Y.: A decomposition model for stereo matching.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 6091-6100 (2021) 3

Zeng, J., Yao, C., Yu, L., Wu, Y., Jia, Y.: Parameterized cost volume for stereo
matching. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. pp. 18347-18357 (2023) 1, 3, 4, 6, 8

Zhang, F., Prisacariu, V., Yang, R., Torr, P.H.: Ga-net: Guided aggregation net
for end-to-end stereo matching. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 185-194 (2019) 9, 11

Zhang, F., Qi, X., Yang, R., Prisacariu, V., Wah, B., Torr, P.: Domain-invariant
stereo matching networks. In: Computer Vision-ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23—-28, 2020, Proceedings, Part II 16. pp. 420—439.
Springer (2020) 11

Zhang, J., Wang, X., Bai, X., Wang, C., Huang, L., Chen, Y., Gu, L., Zhou, J.,
Harada, T., Hancock, E.R.: Revisiting domain generalized stereo matching net-
works from a feature consistency perspective. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 13001-13011 (2022)
11

Zhao, H., Zhou, H., Zhang, Y., Chen, J., Yang, Y., Zhao, Y.: High-frequency stereo
matching network. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 1327-1336 (2023) 1, 2, 3, 4, 6, 10, 11

Zheng, D., Wu, X.M., Liu, Z., Meng, J., Zheng, W.s.: Diffuvolume: Diffusion model
for volume based stereo matching. arXiv preprint arXiv:2308.15989 (2023) 2
Zheng, Z., Nie, N., Ling, Z., Xiong, P., Liu, J., Wang, H., Li, J.: Dip: Deep inverse
patchmatch for high-resolution optical flow. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 8925-8934 (2022)
2, 11



	Adaptive Error Aware Cost Volume for Stereo Matching

