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Abstract. Stereo matching, a fundamental challenge in computer vi-005 005

sion, has seen remarkable achievements through iterative mechanisms006 006

such as RAFT-Stereo and IGEV-Stereo. However, these methods still007 007

underperform in ill-posed regions, such as those with occlusions and chal-008 008

lenging textures, due to a lack of sufficiently effective motion information009 009

in the correlations for these areas to support iterative refinement. How010 010

to employ a more rational iterative sampling strategy when obtaining011 011

sampled correlations is a question that warrants further investigation.012 012

This paper introduces the Adaptive Error Aware Cost Volume (AEACV),013 013

which addresses these challenges by integrating the following two mod-014 014

ules: 1) Adaptive Error Aware Sampling (AEAS) module dynamically015 015

adjusts the sampling range by estimating the error map, effectively opti-016 016

mizing the convergence speed during the disparity estimation process. 2)017 017

Error Aware Correlation (EAC) technique that excludes ill-posed regions018 018

from cost-volume significantly improves the accuracy of stereo matching.019 019

The effectiveness of AEACV-Stereo is validated through extensive ex-020 020

periments, showcasing its superior performance in various scenarios, in-021 021

cluding those with challenging occlusions. Our method (AEACV-Stereo)022 022

ranks first on KITTI 2015, Middlebury, and ETH3D, surpassing existing023 023

published methods. It achieves comparable accuracy by utilizing just one-024 024

third of the cost volume sampling iterations. Additionally, our method025 025

outperforms existing works in zero-shot generalization capabilities across026 026

various datasets.027 027

1 Introduction028 028

The emergence of stereo-matching algorithms has revolutionized various fields,029 029

including autonomous driving, robotics, and virtual reality, by enabling depth030 030

perception through the estimation of disparities between pairs of camera-captured031 031

images.032 032

Recent advancements have been made in leveraging 3D Convolutional Neural033 033

Networks (CNNs) for cost volume aggregation, yielding promising results [1, 7,034 034

33, 35]. Nevertheless, these methods are computationally intensive. To address035 035

this challenge, researchers have turned to iterative algorithms based on cost036 036

volume refinement [12, 14, 34, 40, 44], which significantly reduce computational037 037
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Fig. 1: Performance of our AEACV-Stereo. (a) Comparison with current stereo meth-
ods [2, 4, 12, 14, 30, 33, 34, 44, 45] on KITTI 2015 leaderboard. (b) Comparison with
current stereo methods [8, 11, 14, 22, 28, 30, 34, 37, 46] on ETH3D leaderboard. (c) End
Points Error (EPE) comparison with IGEV-Stereo [34] on SceneFlow test set as the
number of iterations changes.

complexity and allow for higher-resolution cost volumes, enhancing algorithmic038 038

performance.039 039

Despite these advancements, these methods ignore the noise caused by occlu-040 040

sion during the iteration process. The existing work still has the following prob-041 041

lem. The existing work RAFT-Stereo, IGEV, Selective-IGEV, they use GRU042 042

module to enhance the edge details, especially, Selective IGEV uses different fre-043 043

quences to balance the edge region and the smooth region effect. However, the044 044

occluded error information is also repeated in the refine module.045 045

Considering this problem, we design a new refine mechanism. Firstly, update046 046

the occlusion region and correlation volume, then update the final disparity.in047 047

iterative methods, pixels with a disparity far from the ground truth and low pre-048 048

cision require a larger sampling range to achieve swift convergence. The occlusion049 049

information is embedded by the network sending to the correlation module, and050 050

GRU module receive a complete information to regress the final disparity. In051 051

this process, we can use less iteration numbers in the training process, because052 052

of the occlusion region aware refine module. In contrast, pixels with a disparity053 053

close to the ground truth demand smaller steps for more nuanced refinement.054 054

Second, correlations in these regions lack reliable motion information, hindering055 055

the iterative process [12,14,44].056 056

In this paper, we introduce a simple and effective approach to tackle these057 057

issues. We propose a dynamic sampling strategy based on an error map de-058 058

rived from a lightweight, unsupervised error estimation module. This strategy059 059

dynamically adjusts the sampling range and planes, enabling faster convergence.060 060

Furthermore, we present a method for constructing a cleaner cost volume by fil-061 061

tering out noise from ill-posed areas, preventing interference during the iterative062 062

process for more accurate and cleaner boundaries, as shown in Fig. 2.063 063

Our proposed method, AEACV-Stereo, demonstrates superior performance064 064

across benchmark datasets such as SceneFlow [18], KITTI 2015 [19], Middle-065 065

bury [23] and ETH3D [24], surpassing existing state-of-the-art methods. In terms066 066

of iterative speed, our method achieves comparable accuracy to the 32nd iteration067 067
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Fig. 2: Visualization of our AEACV-Stereo and IGEV-Stereo [34] on KITTI 2015. With
the error aware mask distinguishing the Ill-Posed and normal regions more clearly, our
method can perform cleaner boundaries from foreground and background. Up-Left:
Input Left Image. Up-Right: Generated Error Aware Mask. Bottom-Left: Disparity
Predicted by IGEV-Stereo [34]. Bottom-Right: Disparity Predicted by AEACV-Stereo.

of IGEV-Stereo [34] with only the 10th iteration, as shown in Fig.1. Additionally,068 068

the AEACV-RAFT version significantly outperforms RAFT-Stereo [14], validat-069 069

ing the method’s transferability.070 070

The primary contributions of our work can be summarized as follows: 1)071 071

We present a dynamic sampling strategy based on an error map, significantly072 072

accelerating iterative speed. 2) We introduce a cost volume construction method073 073

that effectively filters out noise from ill-posed regions, enhancing the accuracy074 074

of disparity prediction. 3) Our method has demonstrated its effectiveness by075 075

outperforming existing methods across various public benchmarks, reinforcing076 076

the practicality and potential impact of our approach.077 077

2 Related Works078 078

Learning-based & Iterative Approaches. With the development of deep079 079

learning methods, a proliferation of neural network architectures [1,5,7,9,13,14,080 080

20,31–35,38,39] for stereo matching has emerged, marking a significant evolution081 081

in the domain over recent years. These methods, like GC-Net [9], PSM-Net [1],082 082

and ACV-Net [33], compute the 4D cost volume and deploy the 3D convolu-083 083

tional layers to aggregate the cost volume for predicting disparities. However,084 084

their high computational demands limit their efficiency, especially with high-085 085

resolution inputs. To address this limitation, cascade, and cost volume pyramid086 086

methods [6, 25, 36] have been introduced. For instance, CasStereo [6] and CF-087 087

Net [25] employ a coarse-to-fine strategy to improve efficiency. Yet, this approach088 088

carries the risk of propagating coarse disparity errors. In this case, iterative meth-089 089

ods [12,14,34,40,44] have been proposed. RAFT-Stereo [14] starts to recurrently090 090

update the disparity field using local correlation information retrieved from the091 091

3D cost volume. IGEV-Stereo [34] further uses lightweight 3D convolution to092 092

obtain the representation of global information and combines it with local infor-093 093

mation, which significantly improves the effect of challenging areas. This itera-094 094

tive scheme stands out for its ability to balance computational efficiency with095 095
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the need for precise disparity estimation. CREStereo [12] introduces a hierarchi-096 096

cal network architecture that employs a coarse-to-fine strategy, complemented097 097

by a stacked cascaded approach for inference, effectively supplanting the tradi-098 098

tional single-resolution iterative framework. Similarly, DLNR [44] innovates by099 099

employing LSTM instead of GRU, which offers the distinct benefit of decou-100 100

pling the updating of hidden states from the disparity prediction process. Most101 101

methods [21,29] utilize CNN-based spatial propagation to refine the disparity in102 102

occluded regions, yet they demonstrate limited efficacy in addressing large and103 103

irregular occluded regions. Moreover, occlusion-aware techniques like GOAT [16]104 104

integrate an occlusion estimation module to produce occlusion masks, intending105 105

to tack occluded areas. However, potential inaccuracies in these masks might106 106

inadvertently affect non-occluded regions.107 107

Sampling Strategies for Cost Volume. Initially, iterative optimization108 108

schemes have introduced fixed sampling range [14,34] for cost volume as a strat-109 109

egy to reduce computational load. However, adaptively retrieving information110 110

from the cost volume based on the current disparity status is more reasonable.111 111

For instance, a global sampling range can provide more information to speed up112 112

convergence when disparity worsens, and a local one can prevent fluctuations113 113

when disparity is close to ground truth. CREStereo [12] extends the sampling114 114

interval to the y direction, improving the performance when epipolar lines are115 115

not well aligned; CREStereo++ [8] and UASNet [17] employ cost volume to com-116 116

pute error maps and adjust the sampling space accordingly, facilitating robust117 117

stereo matching adaptable to a range of datasets. However, the computation118 118

of error maps is contingent upon the recalculation of the cost volume at each119 119

iteration. PCV-Stereo [40] introduced an adaptive sampling strategy, utilizing120 120

a multi-Gaussian distribution to fit the ground truth and dynamically adjust121 121

the sampling range. Despite its potential to significantly reduce the number of122 122

iterations, this method incorporates additional supervision, which introduces a123 123

degree of complexity.124 124

3 Method125 125

In this section, we introduce three main components of our Adaptive Error126 126

Aware Cost Volume Stereo matching network (AEACV-Stereo), which are 1)127 127

Adaptive Error Aware Sampling, 2) Error Aware Correlation and 3) Confidence128 128

Aware Refinement. The whole pipeline is shown in Fig. 3.129 129

3.1 Adaptive Error Aware Sampling130 130

To achieve an adaptive sampling mechanism, previous methods mainly use131 131

cost volume to estimate the error map from coarse to fine [8, 17] or employ132 132

Gaussian distribution [40] to fit ground truth. However, these approaches involve133 133

redundant computations of cost volume in each stage or introduce additional su-134 134

pervisory signals like KL divergence. In our design, we introduce a lightweight135 135
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Fig. 3: Our proposed AEACV-Stereo comprises three key components: 1) Adaptive
Error Aware Sampling, 2) Error Aware Correlation, and 3) Confidence Aware Refine-
ment. Our method first predicts an Error Map to adaptively adjust the sampling range
and employs the sampled planes to compute Error Aware Correlation based on the
generated ill-posed mask. The Error Aware Correlation is then combined with tradi-
tional correlations to iteratively update the predicted disparity through ConvGRUs.

error estimation module to generate the Error Map, measuring the disparity sta-136 136

tus without any supervision. This decoupled design separates the computations137 137

between cost volume and error map, enabling the cost volume to be calculated138 138

once and shared for all iterations. Our sampling strategy is illustrated in Fig. 4.139 139

Error Estimation. In our Error Estimation Module, we refine left and140 140

right features F r, F l ∈ Rd×H×W and warp the refined right feature F r
refine by141 141

applying current disparity (disp) as follows:142 142

F i
refine = CNN(F i)

F rW
refine = warp(F r

refine, disp)
(1)143 143

where i ∈ [l, r] represents left and right features, F rW
refine represents warped144 144

refined right feature. In this case, we can decouple the computations of cost145 145

volume from generating the error map (error) by employing cosine similarity:146 146

error = 1−
F rW
refine ∗ F l

refine

||F rW
refine|| ∗ ||F l

refine||
(2)147 147

Adaptive Sampling Range. With pre-defined σ and error, we can obtain148 148

adaptive sampling range radp without any supervision. Equation 3 shows how to149 149

get radp:150 150

radp = error ∗ σ

2dr
∗ r (3)151 151

where σ = 32 is a hyperparameter that represents the max sampling boundary152 152

when error equals 1 for the input resolution, dr on behalf of downsampling ratio,153 153

r ∈ {−R,−R + 1, . . . , 0, . . . , R − 1, R}, and R is a hyperparameter. Then, we154 154

directly plus the radp to the current disparity to obtain all sampling planes.155 155

Fig. 5 illustrates how our adaptive error aware sampling mechanism worked156 156
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Fig. 4: The architecture of proposed modules. Left: Adaptive Error Aware Sampling.
Up-Right: Error Aware Correlation. Bottom-Right: ConvGRU with Error Aware Cor-
relation and Sampled Correlation Pyramid. Details are described in Section 3.

for each iteration. Compared with the fixed sampling method employed in [12,157 157

14,34,44], our sampling mechanism can adjust sampling planes and range during158 158

convergence. Unlike [8,17,40], our method doesn’t introduce any extra supervi-159 159

sions and redundant computations of correlation, which is easier to implement160 160

and transfer to other architectures.161 161

3.2 Error Aware Correlation162 162

For ill-posed areas, the correlations derived from conventional computation163 163

methods are less effective, given the absence of corresponding regions in the164 164

right image, hindering the provision of meaningful motion information. We have165 165

observed that both all-pair correlations [14,34] or correlations derived from warp-166 166

based methods [8,17,26] are susceptible to the impact of this issue, as shown in167 167

Fig. 6. Therefore, we introduce an Error Aware Correlation (EAC) to address168 168

this problem more clearly, which is illustrated in Fig. 4 and 6. Our EAC module169 169

effectively reduces noise in ill-posed regions within correlations and provides170 170

boundary information to distinguish these areas. This enables the CAR module171 171

to refine these regions accordingly.172 172

Error Aware Warping. To distinguish valid and invalid areas, we propose173 173

generating a mask ∈ R1×H×W through error aware warping to obtain clearer174 174

information in advance from left and right images Il, Ir ∈ R3×H×W , according175 175

to equation 4.176 176

IWr = warp(Ir, disp)

mask =
Σc||Il − IWr ||1

c
< τ

(4)177 177

where c = 3 is the RGB channel and τ = 0.05 is a threshold, which is a hy-178 178

perparameter, to control whether the pixel inside valid or invalid areas. Based179 179
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Fig. 5: The visualization of the fixed sampling method (First-Row) and our adaptive
error aware sampling method (Bottom-Rows) at each iteration.

on second equation in 1, we use F r and current disparity to yield warped right180 180

feature F rW ∈ Rd×H×W , like [8, 17, 26]. After that, we apply the error aware181 181

mask to mask out F rW and explicitly separate invalid and valid regions.182 182

Correlation Computation. Given all sampling planes, we compute Error183 183

Aware Correlation by using F l and masked out F rW individually. We pick up184 184

p = 9 sampling planes from radp (radp func: 3 and p represents the number of185 185

sampling planes), which consists of the current disparity plane and p− 1 planes186 186

symmetric with it. Then we employ each plane to compute Error Aware Warp-187 187

ing mentioned before to obtain p pairs of F l and mask out F rW . These pairs of188 188

features will be used to compute correlations individually as follows:189 189

Corr(ip) =
1

C
ΣC

j=1F
l(ip)F

rW (ip) (5)190 190

where ip means ith planing feature, and C represents feature channel. After-191 191

ward, all Error Aware Correlations will be concatenated together and deployed192 192

in Convolutional GRU (ConvGRU) [14,34] to generate the motion features with193 193

other correlations.194 194

In comparison with other warping-based methods [8, 26], our Error Aware195 195

Correlation can generate clearer boundaries between ill-posed and normal re-196 196

gions, and explicitly eliminating the effects of ill-posed areas from the cost vol-197 197

ume using an error aware mask, as demonstrated in Fig. 6. Due to the strong198 198

connection between warping quality and disparity status. Considering the signif-199 199

icant impact of warping quality on disparity status, we integrate our Error Aware200 200

Correlation (EAC) with Geometric Encoding Volume (GEV) and All-Pairs Cor-201 201

relation (APC) to predict motion features. This hybrid approach employs GEV202 202

and APC to guide the initial convergence, with EAC contributing to refinement203 203
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Fig. 6: Visualization of matching correlations in different sampling planes. The GEV
treats all regions the same. Although APC can differentiate these two regions, it cannot
provide clear boundaries. In contrast, our Error Aware Correlation can clearly distin-
guish ill-posed and normal regions, providing more accurate matching details to the
network. Left-Column: Left and Right Images from SceneFlow and Predicted Dispar-
ity. Up-Row: Geometric Encoding Volume (GEV) in IGEV-Stereo [34]. Middle-Row:
All-Pairs Correlation (APC) in RAFT-Stereo [14]. Bottom-Row: Our Error Aware Cor-
relation.

in later stages, ensuring stable convergence and preventing the accumulation of204 204

errors caused by poor warping quality at the outset.205 205

3.3 Confidence Aware Refinement206 206

To further integrate the error map into the entire model, we draw inspiration207 207

from PCV-Stereo [40] and refine the last output disparity map with the final208 208

error map. We employ a confidence-aware refinement module to enhance the209 209

disparity in detailed areas. The confidence map is reconstructed as:210 210

conf = 1− error (6)211 211

Given the confidence map, we refined the final disparity step by step as212 212

follows:213 213
F disp = CNN1(disp)

F cat = Concat(F disp, F l, F l
refine)

x = CNN3(ReLU(CNN2(F
cat)))

disprefined = disp+ x ∗ conf

(7)214 214

where F l means left feature, F l
refine means refined left feature.215 215

3.4 Loss Function216 216

Similar to [34], we employ smooth L1 Loss [1] on initial disparity d0 by using217 217

equation 8, if present. Otherwise, the Linit will be zero.218 218



ECCV 2024 Submission #4123 9

Table 1: Quantitative evaluation on SceneFlow test set. The best result is in bold.

Method GwcNet [7] GANet [41] CSPN [3] LEAStereo [4] ACVNet [33] IGEV-Stereo [34] ours

AvgErr 0.76 0.84 0.78 0.78 0.48 0.47 0.46

Linit = SmoothL1
(d0 − dgt) (8)219 219

where dgt means the ground truth disparity. We calculate the L1 loss on all220 220

predicted disparities {di}Ni=1. We follow [14] to exponentially increase weights,221 221

and the total loss is defined as:222 222

Lstereo = Linit +ΣN
i=1γ

N−i||di − dgt||1 (9)223 223

where γ = 0.9, and dgt represent ground truth.224 224

4 Experiments225 225

4.1 Implementation Details226 226

Our model’s performance is evaluated on the SceneFlow [18] dataset and227 227

three public benchmarks: ETH3D [24], Middlebury [23], and KITTI-2015 [19].228 228

The model is implemented using PyTorch and experiments are conducted on229 229

NVIDIA A100 GPUs. For pretraining and ablation studies, the model is ini-230 230

tially trained on the synthetic SceneFlow [18] training set (both cleanpass and231 231

finalpass) for 200k iterations with a batch size of 8, followed by evaluation on the232 232

SceneFlow test set. We employ the AdamW optimizer [10] with an initial learning233 233

rate of 2e−4 and use a OneCycle scheduler [27] with a warm-up strategy. Data234 234

augmentation is applied in accordance with the settings in IGEV-Stereo [34].235 235

Images are randomly cropped to 320× 736.236 236

When fine-tuning on KITTI [19], the pre-trained SceneFlow model is used on237 237

mixed KITTI 2012 and KITTI 2015 training image pairs for 20k iterations, with a238 238

learning rate of 1e−4. For Middlebury [23] and ETH3D [24], given the limited size239 239

of the training sets, the pre-trained model is further trained on mixed datasets240 240

comprising synthetic SceneFlow [18], CREStereo [12], ETH3D [24], and Middle-241 241

bury (2005, 2006, 2021, and V3) [23]. Consistent data augmentation including242 242

saturation change, image perturbance, and random scale is applied during both243 243

the pretraining and fine-tuning stages.244 244

4.2 Comparisons with State-of-the-art245 245

We evaluate AEACV-Stereo on SceneFlow, KITTI 2015, ETH3D, and Mid-246 246

dlebury, comparing its performance with the published state-of-the-art methods.247 247

As shown in Tab. 1, on the SceneFlow test set, when compared to existing248 248

methods, we achieve a new state-of-the-art EPE of 0.46, highlighting the superior249 249

performance of our approach.250 250
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Table 2: Quantitative evaluation on the KITTI-2015 leaderboard. "Noc" and "All"
indicate the non-occluded and overall regions, respectively. The best results for each
evaluation metric are bolded, and the second-best are underlined.

Method Noc(%) All(%)
D1-bg D1-fg D1-all D1-bg D1-fg D1-all

RAFT-Stereo [14] 1.45 2.94 1.69 1.58 3.05 1.82
CREStereo [12] 1.33 2.60 1.54 1.45 2.86 1.69

DLNR [44] 1.45 2.39 1.61 1.60 2.59 1.76
CroCo v2 [30] 1.30 2.56 1.51 1.38 2.65 1.59

IGEV-Stereo [34] 1.27 2.62 1.49 1.38 2.67 1.59
AEACV-Stereo (ours) 1.23 2.36 1.42 1.35 2.38 1.52

Table 3: Quantitative evaluation on the Middlebury leaderboard. "Noc" and "All"
indicate the non-occluded and overall regions, respectively. The best results for each
evaluation metric are bolded, and the second-best are underlined.

Method Noc(%) All(%)
AvgErr RMS Bad 2.0 Bad 4.0 AvgErr RMS Bad 2.0 Bad 4.0

RAFT-Stereo [14] 1.27 8.40 4.74 2.75 2.71 12.6 9.37 6.42
CroCo v2 [30] 1.76 8.91 4.90 4.18 2.36 10.6 11.1 6.75
GMStereo [30] 1.31 6.45 7.14 2.96 1.89 8.03 11.7 6.07
CREStereo [12] 1.15 7.70 3.71 2.04 2.10 10.5 8.13 5.05

DLNR [44] 1.06 7.78 3.20 1.89 1.91 10.2 6.98 4.77
IGEV-Stereo [34] 2.89 12.8 4.83 3.33 3.64 15.1 8.16 5.79

AEACV-Stereo (ours) 0.99 6.32 4.15 1.97 1.56 8.13 7.35 4.22

We assess AEACV-Stereo on the KITTI-2015 test set, and the results are251 251

submitted to the online KITTI leaderboard. As presented in Tab. 2, our method252 252

secures the 1st position among all published methods and ranks 2nd overall253 253

out of 300+ submissions. We outperform IGEV and Croco v2 by 7% on the254 254

D1-all metric, achieving the best result across all listed metrics, with notable255 255

improvements observed in both non-occluded and overall regions.256 256

Regarding Middlebury, our model is trained on mixed datasets with 5% aug-257 257

mented training data from Middlebury datasets. The training process continues258 258

for an additional 150k iterations with 768 × 1024 image crops, considering the259 259

larger size of Middlebury image pairs. The results are submitted to the online260 260

evaluation benchmark. As shown in Tab. 3, our method achieves the best aver-261 261

age error and competitive Bad 2.0 and Bad 4.0 metric compared to all published262 262

methods. Given our method’s focus on filtering out noises and adverse effects in263 263

challenging regions, the outstanding results in average error highlight the over-264 264

all improvement of our method across the entire image. As depicted in Fig 7265 265

and Fig. 8, our method demonstrates more accurate predictions in challenging266 266

areas, such as the boundaries of different objects, enabling better differentiation267 267

between them.268 268

For ETH3D, we train our network on the complete training set, incorporating269 269

2.5% augmented training data from the ETH3D low-res two-view stereo dataset.270 270
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Left Image IGEV-Stereo [34] DLNR [44] CREStereo [12] Ours

Fig. 7: The visualization of AEACV-Stereo(ours) and other state-of-the-art methods
on Middlebury dataset.

Table 4: Quantitative evaluation on
the ETH3D leaderboard in non-occluded
(noc) regions.

Method AvgErr Bad 1.0 Bad 0.5

HITNet [28] 0.20 2.79 7.89
RAFT-Stereo [14] 0.18 2.44 7.04
DIP-Stereo [46] 0.18 1.97 6.74
GMStereo [37] 0.19 1.83 5.94
CREStereo [12] 0.13 0.98 3.58
CroCo v2 [30] 0.14 0.99 3.27

IGEV-Stereo [34] 0.14 1.12 3.52
AEACV-Stereo(ours) 0.13 0.80 3.17

Table 5: Model generalization experi-
ments. 2-pixel error rate for Middlebury
and 1-pixel error rate for ETH3D.

Model Middlebury ETH3Dhalf quater

GANet [41] 13.5 8.5 6.5
DSMNet [42] 13.8 8.1 6.2

FC-GANet [43] 10.2 7.8 5.8
Graft-GANet [15] 9.8 - 6.2
RAFT-Stereo [14] 8.7 7.3 3.2
IGEV-Stereo [34] 7.1 6.2 3.6

AEACV-Stereo(ours) 5.9 5.1 3.7

The same number of iterations are applied with 416× 640 image crops. Quanti-271 271

tative comparisons are provided in Tab. 4, which showcase our state-of-the-art272 272

performance among published methods on the online benchmark for the majority273 273

of metrics. Remarkably, our method outperforms the published state-of-the-art274 274

by 18% on the Bad 1.0 metric, establishing itself as the current state-of-the-art275 275

on the leaderboard.276 276

4.3 Zero-Shot Generalization277 277

Exploring the adaptability of AEACV-Stereo, we investigate its potential to278 278

generalize from synthetic training data to previously unseen real world datasets.279 279

Given the difficulty in acquiring large real world datasets for training, the abil-280 280

ity of stereo models to exhibit generality is of paramount importance. We train281 281

AEACV-Stereo using the SceneFlow dataset, adopting the identical settings as282 282

IGEV-Stereo [34], and then we directly evaluate its effectiveness on the Mid-283 283

dlebury 2014 and ETH3D training sets. As depicted in Tab. 5, AEACV-Stereo284 284

demonstrates competitive performance in the same zero-shot setting.285 285
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(a) Left Image (b) IGEV-Stereo [34] (c) Ours

Fig. 8: The visualization of IGEV-Stereo and AEACV-Stereo(ours) on ETH3D dataset.

Table 6: Ablation study of proposed module on the SceneFlow test set. AEAS, CAR
and EAC refer to Adaptive Error Aware Sampling, Confidence Aware Refinement and
Error Aware Correlation module, respectively. Baseline is the official IGEV-Stereo [34].

Model AEAS CAR EAC AvgErr Bad 1.0 Params(M)

Baseline 0.479 2.47 12.60

AEAS ✓ 0.470 2.43 13.30
AEAS+CAR ✓ ✓ 0.466 2.42 13.53
Full method ✓ ✓ ✓ 0.462 2.40 13.53

4.4 Ablation Study286 286

To further validate the efficacy of each module in our method and explore the287 287

optimal configuration of error-aware correlation, we conducted comprehensive288 288

ablation experiments on the SceneFlow dataset.289 289

Model Components. As illustrated in Tab. 6, the utilization of an adaptive290 290

sampling strategy results in enhanced convergence and improved prediction ac-291 291

curacy. Compared to baseline model, our adaptive sampling approach enables a292 292

denser sampling space in accurately estimated regions and expands the sampling293 293

range in challenging areas, enabling more comprehensive information acquisition294 294

for updating the iterative direction. The incorporation of the confidence-aware295 295

refinement module allows for additional fine-tuning, refining the precision of the296 296

obtained disparity map.297 297

Additionally, the introduction of the designed Error Aware Correlation mod-298 298

ule further elevates the accuracy of our model on the SceneFlow test set, albeit299 299

with an increase in computational complexity. However, its inclusion results in300 300

higher precision, ensuring overall improved performance, especially when dealing301 301

with ill-posed regions.302 302

Number of sampling planes Since our proposed Error Aware Correlation303 303

(EAC) relies on the number of sampling planes, and the utilization of different304 304

planes can yield varying performance, we conduct an exploration of different set-305 305

tings to determine the most suitable configuration for our model. Tab. 7 presents306 306

the results of different correlation settings. We apply the same training settings307 307

on the synthetic SceneFlow training set and evaluate our model on the Scene-308 308



ECCV 2024 Submission #4123 13

Table 7: Exploration of plane numbers. Standard evaluation thresholds include a 2-
pixel error rate for Middlebury [23] and a 3-pixel error rate for KITTI 2015 [19].

Model Planes SceneFlow Middlebury KITTI-2015AvgErr half quater

AEAS+CAR - 0.466 7.37 6.65 6.07

Full Method
1 0.466 5.84 5.64 6.13
3 0.465 5.56 6.93 6.03
9 0.462 5.88 5.09 5.86

Table 8: Model generalization experiments.
2-pixel error rate for Middlebury-Half and
1-pixel error rate for ETH3D.

Model SceneFlow Mid-H ETH3DAvgErr Bad 1.0

RAFT-Stereo [14] 0.72 3.4 7.3 3.2
AEACV (RAFT-based) 0.56 3.0 6.4 2.9

Table 9: Quantitative evaluation
on the KITTI-2015 leaderboard
over non-occluded (noc) regions.

Model Noc (%)
D1-bg D1-fg D1-all

RAFT-Stereo [14] 1.58 3.05 1.82
AEACV (RAFT-based) 1.52 2.72 1.72

Flow test set, as well as the training sets of Middlebury and KITTI 2015. While309 309

the 1-plane and 3-plane configurations show marginal improvements in Scene-310 310

Flow, the overall performance on Middlebury and KITTI 2015 is enhanced. The311 311

9-plane setting ultimately achieves the best overall performance. The increase312 312

in the number of planes assists the model in obtaining a more precise motion313 313

direction under conditions of imprecise disparity estimation. Therefore, the final314 314

choice for our correlation configuration is the 9-plane setting.315 315

4.5 Transferability of our method316 316

Our error-aware correlation is built on the all-pairs cost volume, making it317 317

easily transferable to other cost-volume-based stereo-matching approaches. To318 318

further validate the efficacy and transferability of our designs across different319 319

cost-volume-based methods, we implement a new version of our method based320 320

on RAFT-Stereo [14], following the same training settings.321 321

We initially train the AEACV (RAFT-based) method on the synthetic Scene-322 322

Flow training set for 200k iterations. As shown in Tab. 8, we evaluate our method323 323

on the SceneFlow test set, as well as the Middlebury and ETH3D training sets.324 324

The results show that our method not only further promotes convergence on325 325

SceneFlow but also exhibits improved generalization capabilities. Additionally,326 326

we perform fine-tuning on KITTI using the same settings as we used. As demon-327 327

strated in Tab. 9. Compared with the RAFT-Stereo [14], our AEACV (RAFT-328 328

based) significantly improves the overall performance.329 329

5 Conclusion and Discussion330 330

Our proposed AEACV-Stereo achieves state-of-the-art results on the real331 331

world and synthetic datasets, and outperforms all published works on KITTI332 332
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2015, ETH3D, Middlebury and SceneFlow by leveraging Adaptive Error Aware333 333

Sampling module, Error Aware Correlation module, and Confidence Aware Re-334 334

finement module, which achieve similar performance to previous SOTA (32 iter-335 335

ations) in only 10 iterations. Meanwhile, we also validate our method’s flexibility336 336

and robustness by incorporating our module into RAFT-Stereo.337 337

Our model only requires one-third of iterations to reach excellent accuracy.338 338

However, the extra warping computations still cause our model to have a similar339 339

inference time to previous iterative-based methods. We are considering introduc-340 340

ing a novel way to further speed up each iteration and the entire inference time.341 341

Furthermore, we are considering transferring our methodology to Multi-View342 342

Stereo Matching, 3D-Reconstruction, and VSLAM.343 343
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